手记

k8s日志收集实战

简介

本文主要介绍在k8s中收集应用的日志方案,应用运行中日志,一般情况下都需要收集存储到一个集中的日志管理系统中,可以方便对日志进行分析统计,监控,甚至用于机器学习,智能分析应用系统问题,及时修复应用所存在的问题。

在k8s集群中应用一般有如下日志输出方式

  • 直接遵循docker官方建议把日志输出到标准输出或者标准错误输出

  • 输出日志到容器内指定目录中

  • 应用直接发送日志给日志收集系统

本文会综合部署上述日志收集方案。

日志收集组件说明

  • elastisearch 存储收集到的日志

  • kibana 可视化收集到的日志

  • logstash 汇总处理日志发送给elastisearch 存储

  • filebeat 读取容器或者应用日志文件处理发送给elastisearch或者logstash,也可用于汇总日志

  • fluentd 读取容器或者应用日志文件处理发送给elastisearch,也可用于汇总日志

  • fluent-bit 读取容器或者应用日志文件处理发送给elastisearch或者fluentd

部署

本次实验使用了3台虚拟机做k8s集群,每台虚拟机3G内存

部署前的准备

# 拉取文件git clone https://github.com/mgxian/k8s-log.gitcd k8s-log
git checkout v1# 创建 logging namespacekubectl apply -f logging-namespace.yaml

部署elastisearch

# 本次部署虽然使用 StatefulSet 但是没有使用pv进行持久化数据存储# pod重启之后,数据会丢失,生产环境一定要使用pv持久化存储数据# 部署kubectl apply -f elasticsearch.yaml# 查看状态kubectl get pods,svc -n logging -o wide# 等待所有pod变成running状态 # 访问测试# 如果测试都有数据返回代表部署成功kubectl run curl -n logging --image=radial/busyboxplus:curl -i --tty
nslookup elasticsearch-logging
curl 'http://elasticsearch-logging:9200/_cluster/health?pretty'curl 'http://elasticsearch-logging:9200/_cat/nodes'exit# 清理测试kubectl delete deploy curl -n logging

部署kibana

# 部署kubectl apply -f kibana.yaml# 查看状态kubectl get pods,svc -n logging -o wide# 访问测试# 浏览器访问下面输出的地址 看到 kibana 界面代表正常# 11.11.11.112 为集群中某个 node 节点ipKIBANA_NODEPORT=$(kubectl get svc -n logging | grep kibana-logging | awk '{print $(NF-1)}' | awk -F[:/] '{print $2}')echo "http://11.11.11.112:$KIBANA_NODEPORT/"

部署fluentd收集日志

# fluentd 以 daemoset 方式部署# 在每个节点上启动fluentd容器,收集k8s组件,docker以及容器的日志# 给每个需要启动fluentd的节点打相关label# kubectl label node lab1 beta.kubernetes.io/fluentd-ds-ready=truekubectl label nodes --all beta.kubernetes.io/fluentd-ds-ready=true# 部署kubectl apply -f fluentd-es-configmap.yaml
kubectl apply -f fluentd-es-ds.yaml# 查看状态kubectl get pods,svc -n logging -o wide

kibana查看日志

创建index fluentd-k8s-*,由于需要拉取镜像启动容器,可能需要等待几分钟才能看到索引和数据

image

image

查看日志

image

应用日志收集测试

应用日志输出到标准输出测试

# 启动测试日志输出kubectl run echo-test --image=radial/busyboxplus:curl -- sh -c 'count=1;while true;do echo log to stdout $count;sleep 1;count=$(($count+1));done'# 查看状态kubectl get pods -o wide# 命令行查看日志ECHO_TEST_POD=$(kubectl get pods | grep echo-test | awk '{print $1}')
kubectl logs -f $ECHO_TEST_POD# 刷新 kibana 查看是否有新日志进入

image

应用日志输出到容器指定目录(filebeat收集)

# 部署kubectl apply -f log-contanier-file-filebeat.yaml# 查看kubectl get pods -o wide

添加index filebeat-k8s-* 查看日志

image

应用日志输出到容器指定目录(fluent-bit收集)

# 部署kubectl apply -f log-contanier-file-fluentbit.yaml# 查看kubectl get pods -o wide

添加index fluentbit-k8s-* 查看日志

image

应用直接发送日志到日志系统

# 本次测试应用直接输出日志到 elasticsearch# 部署kubectl apply -f log-contanier-es.yaml# 查看kubectl get pods -o wide

添加index k8s-app-* 查看日志

image

清理

kubectl delete -f log-contanier-es.yaml
kubectl delete -f log-contanier-file-fluentbit.yaml
kubectl delete -f log-contanier-file-filebeat.yaml
kubectl delete deploy echo-test

日志收集系统总结

本小节的图表以ELK技术栈展示说明,实际使用过程中可以使用EFK技术栈,使用fluentd代替logstash,使用fluent-bit代替filebeat。由于fluentd在内存占用和性能上有更好的优势,推荐使用fluentd替代logstashfluent-bitfilebeat性能和内存占用相差不大

k8s集群日志通用收集方案

  • 集群内相关组件日志使用fluentd/filebeat收集

  • 应用输出到标准输出或标准错误输出的日志使用fluentd/filebeat收集

  • 应用输出到容器中指定文件日志使用fluent-bit/filebeat收集

通用日志收集系统

通用日志收集系统架构

image

架构说明

  • 日志收集与处理解耦

  • 由于收集和处理过程间加入了队列,当日志出现暴增时,可以避免分析处理节点被打垮,给分析处理节点足够时间消化日志数据

  • 日志分析处理节点可以动态伸缩

大流量日志收集系统

大流量日志收集系统架构图

image

架构说明

  • 当日志流量过大时,如果每一个日志收集节点都直连队列写数据,由于有很多分散的连接及写请求,会给队列造成压力。如果日志都发送到logstash收集节点,再集中写入队列,会减轻队列压力。

应用日志收集实验(ELK技术栈)

以收集nginx日志为例,进行日志收集分析实验, 复用之前实验创建的elasticsearch,kibana应用。实验采用大流量日志收集架构

部署redis队列
# 部署kubectl apply -f redis.yaml# 查看kubectl get pods -n logging
部署indexer分析日志
# 部署kubectl apply -f logstash-indexer.yaml# 查看kubectl get pods -n logging
部署shipper集中日志
# 部署kubectl apply -f logstash-shipper.yaml# 查看kubectl get pods -n logging
部署nginx测试日志收集
# 部署kubectl apply -f nginx-log-filebeat.yaml# 查看kubectl get pods
持续访问nginx生成日志
# 部署kubectl run curl-test --image=radial/busyboxplus:curl -- sh -c 'count=1;while true;do curl -s -H "User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.89 Safari/537.36 $count" http://nginx-log-filebeat/ >/dev/null;sleep 1;count=$(($count+1));done'# 查看kubectl get pods
访问kibana查看日志

添加index k8s-logging-elk-* 由于 logstash 启动较慢,可能需要等待数分钟才能看到数据

image

清理
kubectl delete -f redis.yaml
kubectl delete -f logstash-indexer.yaml
kubectl delete -f logstash-shipper.yaml
kubectl delete -f nginx-log-filebeat.yaml
kubectl delete deploy curl-test

应用日志收集实验(EFK技术栈)

由于fluentd官方不提供redis队列的支持,本次实验移除了redis队列。

部署indexer分析日志
# 部署kubectl apply -f fluentd-indexer.yaml# 查看kubectl get pods -n logging
部署shipper集中日志
# 部署kubectl apply -f fluentd-shipper.yaml# 查看kubectl get pods -n logging
部署nginx测试日志收集
# 部署kubectl apply -f nginx-log-fluentbit.yaml# 查看kubectl get pods
持续访问nginx生成日志
# 部署kubectl run curl-test --image=radial/busyboxplus:curl -- sh -c 'count=1;while true;do curl -s -H "User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.89 Safari/537.36 $count" http://nginx-log-fluentbit/ >/dev/null;sleep 1;count=$(($count+1));done'# 查看kubectl get pod
访问kibana查看日志

添加index k8s-logging-efk-*

image

清理
kubectl delete -f fluentd-indexer.yaml
kubectl delete -f fluentd-shipper.yaml
kubectl delete -f nginx-log-fluentbit.yaml
kubectl delete deploy curl-test

应用日志可视化

部署日志收集需要的组件

# 部署 indexer shipper fluentbitkubectl apply -f fluentd-indexer.yamlkubectl apply -f fluentd-shipper.yamlkubectl apply -f nginx-log-fluentbit.yaml# 查看kubectl get podskubectl get pods -n logging

模拟用户访问

# 部署kubectl apply -f web-load-gen.yaml# 查看kubectl get pods

访问kibana查看日志

添加index k8s-logging-efk-*

image

创建图表

创建 Search

制作 Visualize 的时候需要使用

按指定条件搜索日志

image

保存 Search

image

创建 Visualize

创建好的 Visualize 可以添加到 Dashboard 中

选择制作 Visualize

image

选择 Visualize 类型

image

选择使用上面步骤保存的 Search

image

选择指定的 bucket

image

选择 code 字段进行统计

image

保存 Visualize

image

使用如上的步骤创建多个 Visualize

image

创建 Dashboard

选择创建 Dashboard

image

把 Visualize 添加到 Dashboard

image

保存 Dashboard

image

编辑调整位置和大小

image

最终图表展示

image

如果快速体验可以在 菜单 Managerment 的 Saved Ojects 标签直接使用导入功能,导入本次实验下载目录k8s-log下的k8s-kibana-all.json文件

image



作者:CountingStars_
链接:https://www.jianshu.com/p/604a7149a632


2人推荐
随时随地看视频
慕课网APP