实现haar小波
参考文章中讲解了haar小波的原理,比较易懂,实现了多级haar小波分解,本文参照它进行了练习,同时添加了小波重建。
# include<iostream># include<opencv2/opencv.hpp>using namespace std; using namespace cv;int main() { Mat src = imread("F:\\testdata\\pic\\16.jpg"); Mat HSV; cvtColor(src, HSV, CV_BGR2HSV); vector<Mat> channels; split(HSV, channels); Mat img = channels.at(1); //上述是获取HSV中的饱和度图像,按需修改 namedWindow("img", 0); imshow("img", img); int height = img.rows; int width = img.cols; int depth = 2; int depthcount = 1; Mat tmp = Mat::ones(Size(width, height), CV_32FC1); Mat wavelet = Mat::ones(Size(width, height), CV_32FC1); Mat imgtmp = img.clone(); imgtmp.convertTo(imgtmp, CV_32FC1); //---------------------------------------小波分解-----------------------------// while (depthcount <= depth) { height = img.rows / pow(2,depthcount-1); width = img.cols / pow(2,depthcount-1); //水平方向变换 for (int i = 0; i < height; ++i) { for (int j = 0; j < width / 2; ++j) { tmp.at<float>(i, j) = (imgtmp.at<float>(i, 2 * j) + imgtmp.at<float>(i, 2 * j + 1)) / 2; tmp.at<float>(i, j+width/2) = (imgtmp.at<float>(i, 2 * j) - imgtmp.at<float>(i, 2 * j + 1)) / 2; } } //垂直方向变换 for (int i = 0; i < height / 2; ++i) { for (int j = 0; j < width; ++j) { wavelet.at<float>(i, j) = (tmp.at<float>(2 * i, j) + tmp.at<float>(2 * i + 1, j)) / 2; wavelet.at<float>(i+height/2, j) = (tmp.at<float>(2 * i, j) - tmp.at<float>(2 * i + 1, j)) / 2; } } /* //低通滤波,选用高斯低通滤波器 Mat ROI = wavelet(Rect(0, 0, width, height)); GaussianBlur(ROI, ROI, Size(7, 7), 0.5); Mat dst(wavelet, Rect(0, 0, width, height)); ROI.copyTo(dst); */ imgtmp = wavelet; depthcount++; } //------------------------------------------小波重建--------------------------------------// while (depth > 0) { height = img.rows / pow(2, depth - 1); width = img.cols / pow(2, depth - 1); //列逆变换 for (int i = 0; i < height/2; ++i) { for (int j = 0; j < width; ++j) { float value1 = imgtmp.at<float>(i, j); float value2 = imgtmp.at<float>(i+height/2, j); tmp.at<float>(2 * i, j) = value1 + value2; tmp.at<float>(2 * i+1, j) = value1 - value2; } } //行逆变换 for (int i = 0; i < height; ++i) { for (int j = 0; j < width / 2; ++j) { float value1 = tmp.at<float>(i, j); float value2 = tmp.at<float>(i , j+width/2); wavelet.at<float>(i, 2*j) = value1 + value2; wavelet.at<float>(i , 2*j+1) = value1 - value2; } } Mat ROI=wavelet(Rect(0, 0, width, height)); Mat dst(imgtmp, Rect(0, 0, width, height)); ROI.copyTo(dst); depth--; } namedWindow("res", 0); imgtmp.convertTo(imgtmp, CV_8UC1); imshow("res", imgtmp); waitKey(0); return 0; }
开源代码实现多种小波函数的小波变换
可以选择按照其文档中的配置方法,调用动态链接库,但是我的尝试不成功,出现了内存异常,所以本文直接将其源码放入自己的项目中,和自己的项目一起编译,可以实现同样的功能。需要注意的是,需要配置好FFTW这个依赖,方法见VS2015配置FFTW
利用这个库中的函数可以得到小波分解的
近似系数
和细节系数
使用示例
重要的只有如下两行函数调用
dwt_2d(data, depth, name, output, flag, length); idwt_2d(output, flag, name, res, length);
#include <iostream>#include <fstream>#include "wavelet2d.h"#include <vector>#include <string>#include <cmath>#include<opencv2\opencv.hpp>using namespace std; using namespace cv;int main() { //读入图片,获取饱和度 Mat src = imread("F:\\testdata\\poreImgV3\\10.jpg"); resize(src, src, Size(450, 450)); Mat HSV; cvtColor(src, HSV, CV_BGR2HSV); vector<Mat> channels; channels.resize(3); split(HSV, channels); Mat saturation = channels.at(1); namedWindow("s", 0); imshow("s", saturation); waitKey(0); //将饱和度图像数据存入vector<vector<double>>中,一行一行放置 int row = saturation.rows; int col = saturation.cols; //分配大小 vector<vector<double>> data; data.resize(row); for (int i = 0; i < data.size(); ++i) { data[i].resize(col); } //放入数据 for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { data[i][j] = saturation.at<uchar>(i, j); } } int depth = 2; string name = "haar"; vector<double> output; //output.resize(row*col); vector<double> flag; vector<int> length; //小波分解 dwt_2d(data, depth, name, output, flag, length); vector<vector<double>> res; res.resize(row); for (int i = 0; i < res.size(); ++i) { res[i].resize(col); } //---------------------------------------------------------------------------------- //小波重建 idwt_2d(output, flag, name, res, length); //写回原图像中 Mat recovery(src.size(), CV_8UC1); for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { recovery.at<uchar>(i, j) = (uchar)res[i][j]; } } imshow("res", recovery); waitKey(0); system("pause"); return 0; }
作者:kuizhu
链接:https://www.jianshu.com/p/69f3d0fa4bed