手记

线性回归---with multiple variables

多变量线性回归

实例:
已知房屋面积和卧室数量,预测房价 计算公式:Price = theta0*1 + theta1*square + theta2*num_houses

1.特征归一化

房间面积和卧室数量相差有2-3个数量级,如果直接利用梯度下降来计算的话,房屋面积可以让函数更快收敛,因此将两个特征进行归一化。

归一化公式:

特征归一化


参考代码:


def featureNormalize(self):
    mu = np.mean(self.x, axis=0)
    sigma = np.std(self.x, axis=0, ddof=1)  # 注意ddof参数,必须是1
    self.x_norm = (self.x - mu)/sigma
    self.x = np.hstack([np.ones((47, 1)), self.x_norm])

注意:每个特征都是一列,因此操作多是在的基础上操作,参数axis=0, 同时注意np.std的使用,ddof参数尤其需要注意。

2. 梯度下降法计算theta

设置步长alpha = 0.01,迭代次数400次,此次损失函数使用向量形式表示:

CostJ


在步长0.01的情况下,损失函数J的曲线,如下图所示。

CostJ


同时设置alpha = 0.001、0.01、0.1、1,见对比图,可以清晰的看出当alpha较大的时候,迅速收敛,而当alpha太小的时候,收敛速度又太慢,可以看出设置alpha=0.01最好。

Differ Alpha


参考代码:


def gradientDescentMulti(self):
    m = len(self.y)
    self.J_history = np.zeros((self.iters, 1))    for i in range(self.iters):
        self.theta = self.theta-self.alpha/m*np.dot((np.dot(self.x, self.theta)-self.y).transpose(), self.x).transpose()
        self.J_history[i] = self.computeCostMulti()    return self.thetadef convergenceGraph(self):
    plt.plot([x for x in range(400)], self.J_history, 'b')
    plt.xlabel('Number of iterations')
    plt.ylabel('Cost J')
    plt.show()
3.Normal Equations

线性回归中theta的计算也可以不使用梯度下降迭代来计算,使用Normal Equations,公式:

Normal Equations


参考代码:


def normalEquations(self):
    self.x = np.hstack([np.ones((47, 1)), self.x])
    self.theta = np.dot(np.dot(np.mat(np.dot(self.x.T, self.x)).I, self.x.T), self.y)
    print(self.theta)



作者:Damon0626
链接:https://www.jianshu.com/p/fd526adbb3ed


0人推荐
随时随地看视频
慕课网APP