手记

18 Spark Streaming程序的优雅停止

  1. Spark Streaming程序的停止可以是强制停止、异常停止或其他方式停止。
    首先我们看StreamingContext的stop()方法

def stop(      stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true)
     ): Unit = synchronized {
    stop(stopSparkContext, false)
}

这里定义了两个参数,stopSparkContext可以通过配置文件定义,接着看接收两个参数的stop方法,代码如下

/**
   * Stop the execution of the streams, with option of ensuring all received data
   * has been processed.
   *
   * @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext
   *                         will be stopped regardless of whether this StreamingContext has been
   *                         started.
   * @param stopGracefully if true, stops gracefully by waiting for the processing of all
   *                       received data to be completed
   */def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {    var shutdownHookRefToRemove: AnyRef = null
    if (AsynchronousListenerBus.withinListenerThread.value) {      throw new SparkException("Cannot stop StreamingContext within listener thread of" +        " AsynchronousListenerBus")
    }
    synchronized {      try {
        state match {          case INITIALIZED =>
            logWarning("StreamingContext has not been started yet")          case STOPPED =>
            logWarning("StreamingContext has already been stopped")          case ACTIVE =>
            scheduler.stop(stopGracefully)            // Removing the streamingSource to de-register the metrics on stop()
            env.metricsSystem.removeSource(streamingSource)
            uiTab.foreach(_.detach())
            StreamingContext.setActiveContext(null)
            waiter.notifyStop()            if (shutdownHookRef != null) {
              shutdownHookRefToRemove = shutdownHookRef
              shutdownHookRef = null
            }
            logInfo("StreamingContext stopped successfully")
        }
      } finally {        // The state should always be Stopped after calling `stop()`, even if we haven't started yet
        state = STOPPED
      }
    }    if (shutdownHookRefToRemove != null) {
      ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove)
    }    // Even if we have already stopped, we still need to attempt to stop the SparkContext because
    // a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true).
    if (stopSparkContext) sc.stop()
}

注释中说明要停止程序时,正确的方式是需要所有接收的数据被处理完成后再停止,那么就需要我们传入的stopGracefully参数为true,然后停止时会等待所有任务执行完成

  1. Spark Streaming提供了一个优雅停止的方法,在StreamingContext里面有一个stopOnShutdown()方法,代码如下

private def stopOnShutdown(): Unit = {
    val stopGracefully = conf.getBoolean("spark.streaming.stopGracefullyOnShutdown", false)
    logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook")    // Do not stop SparkContext, let its own shutdown hook stop it
    stop(stopSparkContext = false, stopGracefully = stopGracefully)
}

stopOnShutdown()方法是什么意思呢,在我们的程序退出时,不管是正常退出或异常退出,stopOnShutdown()方法都会被回调,然后调用stop方法。stopGracefully 可以通过配置项spark.streaming.stopGracefullyOnShutdown配置,生产环境需要配置为true.

  1. stopOnShutdown()方法是怎样被调用的呢?在StreamingContext的start方法中有一行代码

shutdownHookRef = ShutdownHookManager.addShutdownHook(StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)

添加stopOnShutdown函数到ShutdownHookManager中,addShutdownHook代码如下

def addShutdownHook(priority: Int)(hook: () => Unit): AnyRef = {
    shutdownHooks.add(priority, hook)
}

看SparkShutdownHookManager 里都有什么,看代码注释了解SparkShutdownHookManager的功能,不一一介绍

private [util] class SparkShutdownHookManager {  // 优先级队列,优先级越大,越优先执行
  private val hooks = new PriorityQueue[SparkShutdownHook]()  @volatile private var shuttingDown = false

  /**
   * Install a hook to run at shutdown and run all registered hooks in order. Hadoop 1.x does not
   * have `ShutdownHookManager`, so in that case we just use the JVM's `Runtime` object and hope for
   * the best.
   */
  // 这里实例化一个线程,添加到jvm的关闭钩子中,等到jvm退出时才会被调用
  def install(): Unit = {
    val hookTask = new Runnable() {      override def run(): Unit = runAll()
    }    Try(Utils.classForName("org.apache.hadoop.util.ShutdownHookManager")) match {      case Success(shmClass) =>
        val fsPriority = classOf[FileSystem]
          .getField("SHUTDOWN_HOOK_PRIORITY")
          .get(null) // static field, the value is not used
          .asInstanceOf[Int]
        val shm = shmClass.getMethod("get").invoke(null)
        shm.getClass().getMethod("addShutdownHook", classOf[Runnable], classOf[Int])
          .invoke(shm, hookTask, Integer.valueOf(fsPriority + 30))      case Failure(_) =>
        Runtime.getRuntime.addShutdownHook(new Thread(hookTask, "Spark Shutdown Hook"));
    }
  }  // jvm退出时钩子回调此函数
  def runAll(): Unit = {
    shuttingDown = true
    var nextHook: SparkShutdownHook = null
    //循环从优先级队列取数据执行,优先级越大,越优先执行
    while ({ nextHook = hooks.synchronized { hooks.poll() }; nextHook != null }) {
      Try(Utils.logUncaughtExceptions(nextHook.run()))
    }
  }  def add(priority: Int, hook: () => Unit): AnyRef = {
    hooks.synchronized {      if (shuttingDown) {        throw new IllegalStateException("Shutdown hooks cannot be modified during shutdown.")
      }
      val hookRef = new SparkShutdownHook(priority, hook)
      hooks.add(hookRef)
      hookRef
    }
  }  def remove(ref: AnyRef): Boolean = {
    hooks.synchronized { hooks.remove(ref) }
  }
}
  1. 看到这里就明白了,把stopOnShutdown()函数放入SparkShutdownHookManager 中的优化级队列hooks中,默认优先级为51,jvm退出时启动一个线程,调用runAll()方法,然后从hooks队列中一个一个取数据(函数),然后执行,就调用了stopOnShutdown()函数,接着调用stop()函数,我们的应用程序就可以优雅的执行停止工作了。



作者:海纳百川_spark
链接:https://www.jianshu.com/p/18cd94b5c647


0人推荐
随时随地看视频
慕课网APP