手记

Linux 内核里的数据结构——双向链表

双向链表

Linux 内核中自己实现了双向链表,可以在 include/linux/list.h 找到定义。我们将会首先从双向链表数据结构开始介绍内核里的数据结构。为什么?因为它在内核里使用的很广泛,你只需要在 free-electrons.com 检索一下就知道了。

首先让我们看一下在 include/linux/types.h 里的主结构体:

struct list_head {    struct list_head *next, *prev; };

你可能注意到这和你以前见过的双向链表的实现方法是不同的。举个例子来说,在 glib 库里是这样实现的:

struct GList {  gpointer data;  GList next;  GList prev; };

通常来说一个链表结构会包含一个指向某个项目的指针。但是 Linux 内核中的链表实现并没有这样做。所以问题来了:链表在哪里保存数据呢?。实际上,内核里实现的链表是侵入式链表(Intrusive list)。侵入式链表并不在节点内保存数据-它的节点仅仅包含指向前后节点的指针,以及指向链表节点数据部分的指针——数据就是这样附加在链表上的。这就使得这个数据结构是通用的,使用起来就不需要考虑节点数据的类型了。

比如:

struct nmi_desc {    spinlock_t lock;    struct list_head head; };

让我们看几个例子来理解一下在内核里是如何使用 list_head 的。如上所述,在内核里有很多很多不同的地方都用到了链表。我们来看一个在杂项字符驱动里面的使用的例子。在 drivers/char/misc.c 的杂项字符驱动 API 被用来编写处理小型硬件或虚拟设备的小驱动。这些驱动共享相同的主设备号:

#define MISC_MAJOR              10

但是都有各自不同的次设备号。比如:

ls -l /dev |  grep 10
crw-------   1 root root     10, 235 Mar 21 12:01 autofs
drwxr-xr-x  10 root root         200 Mar 21 12:01 cpu
crw-------   1 root root     10,  62 Mar 21 12:01 cpu_dma_latency
crw-------   1 root root     10, 203 Mar 21 12:01 cuse
drwxr-xr-x   2 root root         100 Mar 21 12:01 dri
crw-rw-rw-   1 root root     10, 229 Mar 21 12:01 fuse
crw-------   1 root root     10, 228 Mar 21 12:01 hpet
crw-------   1 root root     10, 183 Mar 21 12:01 hwrng
crw-rw----+  1 root kvm      10, 232 Mar 21 12:01 kvm
crw-rw----   1 root disk     10, 237 Mar 21 12:01 loop-control
crw-------   1 root root     10, 227 Mar 21 12:01 mcelog
crw-------   1 root root     10,  59 Mar 21 12:01 memory_bandwidth
crw-------   1 root root     10,  61 Mar 21 12:01 network_latency
crw-------   1 root root     10,  60 Mar 21 12:01 network_throughput
crw-r-----   1 root kmem     10, 144 Mar 21 12:01 nvram
brw-rw----   1 root disk      1,  10 Mar 21 12:01 ram10
crw--w----   1 root tty       4,  10 Mar 21 12:01 tty10
crw-rw----   1 root dialout   4,  74 Mar 21 12:01 ttyS10
crw-------   1 root root     10,  63 Mar 21 12:01 vga_arbiter
crw-------   1 root root     10, 137 Mar 21 12:01 vhci

现在让我们看看它是如何使用链表的。首先看一下结构体 miscdevice

struct miscdevice {      int minor;      const char name;      const struct file_operations fops;      struct list_head list;      struct device parent;      struct device this_device;      const char *nodename;      mode_t mode; };

可以看到结构体miscdevice的第四个变量list 是所有注册过的设备的链表。在源代码文件的开始可以看到这个链表的定义:

static LIST_HEAD(misc_list);

它实际上是对用list_head 类型定义的变量的扩展。

#define LIST_HEAD(name) \    struct list_head name = LIST_HEAD_INIT(name)

然后使用宏 LIST_HEAD_INIT 进行初始化,这会使用变量name 的地址来填充prevnext 结构体的两个变量。

#define LIST_HEAD_INIT(name) { &(name), &(name) }

现在来看看注册杂项设备的函数misc_register。它在一开始就用函数 INIT_LIST_HEAD 初始化了miscdevice->list

INIT_LIST_HEAD(&misc->list);

作用和宏LIST_HEAD_INIT一样。

static inline void INIT_LIST_HEAD(struct list_head *list) {    list->next = list;    list->prev = list; }

接下来,在函数device_create 创建了设备后,我们就用下面的语句将设备添加到设备链表:

list_add(&misc->list, &misc_list);

内核文件list.h 提供了向链表添加新项的 API 接口。我们来看看它的实现:

static inline void list_add(struct list_head new, struct list_head head) {    __list_add(new, head, head->next); }

实际上就是使用3个指定的参数来调用了内部函数__list_add

  • new - 新项。

  • head - 新项将会插在head的后面

  • head->next - 插入前,head 后面的项。

__list_add的实现非常简单:

static inline void __list_add(struct list_head new,                  struct list_head prev,                  struct list_head *next) {    next->prev = new;    new->next = next;    new->prev = prev;    prev->next = new; }

这里,我们在prevnext 之间添加了一个新项。所以我们开始时用宏LIST_HEAD_INIT定义的misc 链表会包含指向miscdevice->list 的向前指针和向后指针。

这儿还有一个问题:如何得到列表的内容呢?这里有一个特殊的宏:

#define list_entry(ptr, type, member) \    container_of(ptr, type, member)

使用了三个参数:

  • ptr - 指向结构 list_head 的指针;

  • type - 结构体类型;

  • member - 在结构体内类型为list_head 的变量的名字;

比如说:

const struct miscdevice *p = list_entry(v, struct miscdevice, list)

然后我们就可以使用p->minor 或者 p->name来访问miscdevice。让我们来看看list_entry 的实现:

#define list_entry(ptr, type, member) \    container_of(ptr, type, member)

如我们所见,它仅仅使用相同的参数调用了宏container_of。初看这个宏挺奇怪的:

#define container_of(ptr, type, member) ({                      \    const typeof( ((type )0)->member ) mptr = (ptr);    \    (type )( (char )mptr - offsetof(type,member) );})

首先你可以注意到花括号内包含两个表达式。编译器会执行花括号内的全部语句,然后返回最后的表达式的值。

举个例子来说:

#include <stdio.h>int main() {    int i = 0;    printf("i = %d\n", ({++i; ++i;}));    return 0;
}

最终会打印出2

下一点就是typeof,它也很简单。就如你从名字所理解的,它仅仅返回了给定变量的类型。当我第一次看到宏container_of的实现时,让我觉得最奇怪的就是表达式((type *)0)中的0。实际上这个指针巧妙的计算了从结构体特定变量的偏移,这里的0刚好就是位宽里的零偏移。让我们看一个简单的例子:

#include <stdio.h>

struct s {        int field1;        char field2;     char field3; };

int main() {    printf("%p\n", &((struct s*)0)->field3);    return 0; }

结果显示0x5

下一个宏offsetof会计算从结构体起始地址到某个给定结构字段的偏移。它的实现和上面类似:

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

现在我们来总结一下宏container_of。只需给定结构体中list_head类型 字段的地址、名字和结构体容器的类型,它就可以返回结构体的起始地址。在宏定义的第一行,声明了一个指向结构体成员变量ptr的指针__mptr,并且把ptr 的地址赋给它。现在ptr__mptr 指向了同一个地址。从技术上讲我们并不需要这一行,但是它可以方便地进行类型检查。第一行保证了特定的结构体(参数type)包含成员变量member。第二行代码会用宏offsetof计算成员变量相对于结构体起始地址的偏移,然后从结构体的地址减去这个偏移,最后就得到了结构体。

当然了list_addlist_entry不是<linux/list.h>提供的唯一功能。双向链表的实现还提供了如下API:

  • list_add

  • list_add_tail

  • list_del

  • list_replace

  • list_move

  • list_is_last

  • list_empty

  • list_cut_position

  • list_splice

  • list_for_each

  • list_for_each_entry

等等很多其它API。


译文出处:https://www.zcfy.cc/article/doubly-linked-list-in-the-linux-kernel  

via: https://github.com/0xAX/linux-insides/blob/master/DataStructures/dlist.md

译者:Ezio 校对:Mr小眼儿


0人推荐
随时随地看视频
慕课网APP