spark整合elasticsearch两种方式
1.自己生成_id等元数据
2.使用ES默认生成
引入对应依赖
<dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch-spark-13_2.10</artifactId> <version>5.0.1</version></dependency>
生成元数据方式
import org.apache.spark.{SparkConf, SparkContext}import org.elasticsearch.spark._import utils.PropertiesUtilsimport scala.collection.immutableimport scala.collection.mutable.ListBuffer object Spark_ES_WithMeta { val buffer = new ListBuffer[Tuple2[String,immutable.Map[String,String]]] def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]") conf.set("es.nodes","rmhadoop01,rmhadoop02,rmhadoop03"); conf.set("es.port","9200"); conf.set("es.index.auto.create", "true"); val sc = new SparkContext(conf) //读取本地文件 val result = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt") .map(_.split("\\t")) .foreach(d =>{ if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2many")){ val map = Map("id"->d(0), "batch_seq_num"->d(1), "name"->d(2), "contributiveFund"->d(3), "contributivePercent"->d(4), "currency"->d(5), "contributiveDate"->d(6), "corp_basic_info_id"->d(7), "query_time"->d(8) ) buffer.append((d(0),map)) //buffer }else if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2one")){ //Map(d(1) ->gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8))) } } ) sc.makeRDD(buffer).saveToEsWithMeta("spark/guofei_gd_py_corp_sharehd_info") } /** * 使用模板类描述表元数据信息 * */ case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String, name:String,contributiveFund:String, contributivePercent:String,currency:String, contributiveDate:String,corp_basic_info_id:String, query_time:String) }
ES-UI界面
ES.png
使用ES默认元数据方式
import org.apache.spark.sql.SQLContextimport org.apache.spark.{SparkConf, SparkContext}import org.elasticsearch.spark.sql._ object SparkSQL_ES { /** * 使用模板类描述表元数据信息 * */ case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String, name:String,contributiveFund:String, contributivePercent:String,currency:String, contributiveDate:String,corp_basic_info_id:String, query_time:String) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]") conf.set("es.nodes","192.168.20.128"); conf.set("es.port","9200"); conf.set("es.index.auto.create", "true"); val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) //RDD隐式转换成DataFrame import sqlContext.implicits._ //读取本地文件 val gd_py_corp_sharehd_infoDF = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt") .map(_.split("\\t")) .map(d => gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8))) .toDF() //注册表 gd_py_corp_sharehd_infoDF.registerTempTable("gd_py_corp_sharehd_info") /** * */ val result = sqlContext .sql("select * from gd_py_corp_sharehd_info limit 10") .toDF() result.saveToEs("spark/gd_py_corp_sharehd_info") } }
作者:MichaelFly
链接:https://www.jianshu.com/p/a5c669d0ceba