引入
上一篇文章《DAGScheduler源码浅析》中,介绍了handleJobSubmitted函数,它作为生成finalStage的重要函数存在,这一篇文章中,我将就DAGScheduler生成Stage过程继续学习,同时介绍Stage的相关源码。
Stage生成
Stage的调度是由DAGScheduler完成的。由RDD的有向无环图DAG切分出了Stage的有向无环图DAG。Stage的DAG通过最后执行的Stage为根进行广度优先遍历,遍历到最开始执行的Stage执行,如果提交的Stage仍有未完成的父母Stage,则Stage需要等待其父Stage执行完才能执行。同时DAGScheduler中还维持了几个重要的Key-Value集合结构,用来记录Stage的状态,这样能够避免过早执行和重复提交Stage。waitingStages中记录仍有未执行的父母Stage,防止过早执行。runningStages中保存正在执行的Stage,防止重复执行。failedStages中保存执行失败的Stage,需要重新执行,这里的设计是出于容错的考虑。
// Stages we need to run whose parents aren't done private[scheduler] val waitingStages = new HashSet[Stage] // Stages we are running right now private[scheduler] val runningStages = new HashSet[Stage] // Stages that must be resubmitted due to fetch failures private[scheduler] val failedStages = new HashSet[Stage]
依赖关系
RDD的窄依赖是指父RDD的所有输出都会被指定的子RDD消费,即输出路径是固定的;宽依赖是指父RDD的输出会由不同的子RDD消费,即输出路径不固定。
调度器会计算RDD之间的依赖关系,将拥有持续窄依赖的RDD归并到同一个Stage中,而宽依赖则作为划分不同Stage的判断标准。
导致窄依赖的Transformation操作:map、flatMap、filter、sample;导致宽依赖的Transformation操作:sortByKey、reduceByKey、groupByKey、cogroupByKey、join、cartensian。
Stage分为两种:
ShuffleMapStage, in which case its tasks' results are input for another stage
其实就是,非最终stage, 后面还有其他的stage, 所以它的输出一定是需要shuffle并作为后续的输入。
这种Stage是以Shuffle为输出边界,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出
其输出可以是另一个Stage的开始。
ShuffleMapStage的最后Task就是ShuffleMapTask。
在一个Job里可能有该类型的Stage,也可以能没有该类型Stage。
ResultStage, in which case its tasks directly compute the action that initiated a job (e.g. count(), save(), etc)
最终的stage, 没有输出, 而是直接产生结果或存储。
这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。
ResultStage的最后Task就是ResultTask,在一个Job里必定有该类型Stage。
一个Job含有一个或多个Stage,但至少含有一个ResultStage。
Stage类
stage的RDD参数只有一个RDD, final RDD, 而不是一系列的RDD。
因为在一个stage中的所有RDD都是map, partition不会有任何改变, 只是在data依次执行不同的map function所以对于TaskScheduler而言, 一个RDD的状况就可以代表这个stage。
Stage参数说明:
val id: Int //Stage的序号数值越大,优先级越高
val rdd: RDD[], //归属于本Stage的最后一个rdd
val numTasks: Int, //创建的Task数目,等于父RDD的输出Partition数目
val shuffleDep: Option[ShuffleDependency[, _, _]], //是否存在SuffleDependency,宽依赖
val parents: List[Stage], //父Stage列表
val jobId: Int //作业ID
private[spark] class Stage( val id: Int, val rdd: RDD[_], val numTasks: Int, val shuffleDep: Option[ShuffleDependency[_, _, _]], // Output shuffle if stage is a map stage val parents: List[Stage], val jobId: Int, val callSite: CallSite) extends Logging { val isShuffleMap = shuffleDep.isDefined val numPartitions = rdd.partitions.size val outputLocs = Array.fill[List[MapStatus]](numPartitions)(Nil) var numAvailableOutputs = 0 /** Set of jobs that this stage belongs to. */ val jobIds = new HashSet[Int] /** For stages that are the final (consists of only ResultTasks), link to the ActiveJob. */ var resultOfJob: Option[ActiveJob] = None var pendingTasks = new HashSet[Task[_]] private var nextAttemptId = 0 val name = callSite.shortForm val details = callSite.longForm /** Pointer to the latest [StageInfo] object, set by DAGScheduler. */ var latestInfo: StageInfo = StageInfo.fromStage(this) def isAvailable: Boolean = { if (!isShuffleMap) { true } else { numAvailableOutputs == numPartitions } } def addOutputLoc(partition: Int, status: MapStatus) { val prevList = outputLocs(partition) outputLocs(partition) = status :: prevList if (prevList == Nil) { numAvailableOutputs += 1 } } def removeOutputLoc(partition: Int, bmAddress: BlockManagerId) { val prevList = outputLocs(partition) val newList = prevList.filterNot(_.location == bmAddress) outputLocs(partition) = newList if (prevList != Nil && newList == Nil) { numAvailableOutputs -= 1 } } /** * Removes all shuffle outputs associated with this executor. Note that this will also remove * outputs which are served by an external shuffle server (if one exists), as they are still * registered with this execId. */ def removeOutputsOnExecutor(execId: String) { var becameUnavailable = false for (partition <- 0 until numPartitions) { val prevList = outputLocs(partition) val newList = prevList.filterNot(_.location.executorId == execId) outputLocs(partition) = newList if (prevList != Nil && newList == Nil) { becameUnavailable = true numAvailableOutputs -= 1 } } if (becameUnavailable) { logInfo("%s is now unavailable on executor %s (%d/%d, %s)".format( this, execId, numAvailableOutputs, numPartitions, isAvailable)) } } /** Return a new attempt id, starting with 0. */ def newAttemptId(): Int = { val id = nextAttemptId nextAttemptId += 1 id } def attemptId: Int = nextAttemptId override def toString = "Stage " + id override def hashCode(): Int = id override def equals(other: Any): Boolean = other match { case stage: Stage => stage != null && stage.id == id case _ => false } }
处理Job,分割Job为Stage,封装Stage成TaskSet,最终提交给TaskScheduler的调用链
dagScheduler.handleJobSubmitted
-->dagScheduler.submitStage
-->dagScheduler.submitMissingTasks
-->taskScheduler.submitTasks
。
handleJobSubmitted函数
函数handleJobSubmitted和submitStage主要负责依赖性分析,对其处理逻辑做进一步的分析。
handleJobSubmitted最主要的工作是生成Stage,并根据finalStage来产生ActiveJob。
private[scheduler] def handleJobSubmitted(jobId: Int, finalRDD: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], allowLocal: Boolean, callSite: CallSite, listener: JobListener, properties: Properties) { var finalStage: Stage = null try { // New stage creation may throw an exception if, for example, jobs are run on a // HadoopRDD whose underlying HDFS files have been deleted. finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite) } catch { //错误处理,告诉监听器作业失败,返回.... case e: Exception => logWarning("Creating new stage failed due to exception - job: " + jobId, e) listener.jobFailed(e) return } if (finalStage != null) { val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties) clearCacheLocs() logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format( job.jobId, callSite.shortForm, partitions.length, allowLocal)) logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")") logInfo("Parents of final stage: " + finalStage.parents) logInfo("Missing parents: " + getMissingParentStages(finalStage)) val shouldRunLocally = localExecutionEnabled && allowLocal && finalStage.parents.isEmpty && partitions.length == 1 val jobSubmissionTime = clock.getTimeMillis() if (shouldRunLocally) { // 很短、没有父stage的本地操作,比如 first() or take() 的操作本地执行 // Compute very short actions like first() or take() with no parent stages locally. listenerBus.post( SparkListenerJobStart(job.jobId, jobSubmissionTime, Seq.empty, properties)) runLocally(job) } else { // collect等操作走的是这个过程,更新相关的关系映射,用监听器监听,然后提交作业 jobIdToActiveJob(jobId) = job activeJobs += job finalStage.resultOfJob = Some(job) val stageIds = jobIdToStageIds(jobId).toArray val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo)) listenerBus.post( SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties)) // 提交stage submitStage(finalStage) } } // 提交stage submitWaitingStages() }
newStage函数
/** * Create a Stage -- either directly for use as a result stage, or as part of the (re)-creation * of a shuffle map stage in newOrUsedStage. The stage will be associated with the provided * jobId. Production of shuffle map stages should always use newOrUsedStage, not newStage * directly. */ private def newStage( rdd: RDD[_], numTasks: Int, shuffleDep: Option[ShuffleDependency[_, _, _]], jobId: Int, callSite: CallSite) : Stage = { val parentStages = getParentStages(rdd, jobId) val id = nextStageId.getAndIncrement() val stage = new Stage(id, rdd, numTasks, shuffleDep, parentStages, jobId, callSite) stageIdToStage(id) = stage updateJobIdStageIdMaps(jobId, stage) stage }
其中,Stage的初始化参数:在创建一个Stage之前,需要知道该Stage需要从多少个Partition读入数据,这个数值直接影响要创建多少个Task。也就是说,创建Stage时,已经清楚该Stage需要从多少不同的Partition读入数据,并写出到多少个不同的Partition中,输入和输出的个数均已明确。
getParentStages函数:
通过不停的遍历它之前的rdd,如果碰到有依赖是ShuffleDependency类型的,就通过getShuffleMapStage方法计算出来它的Stage来。
/** * Get or create the list of parent stages for a given RDD. The stages will be assigned the * provided jobId if they haven't already been created with a lower jobId. */ private def getParentStages(rdd: RDD[_], jobId: Int): List[Stage] = { val parents = new HashSet[Stage] val visited = new HashSet[RDD[_]] // We are manually maintaining a stack here to prevent StackOverflowError // caused by recursively visiting val waitingForVisit = new Stack[RDD[_]] def visit(r: RDD[_]) { if (!visited(r)) { visited += r // Kind of ugly: need to register RDDs with the cache here since // we can't do it in its constructor because # of partitions is unknown for (dep <- r.dependencies) { dep match { case shufDep: ShuffleDependency[_, _, _] => parents += getShuffleMapStage(shufDep, jobId) case _ => waitingForVisit.push(dep.rdd) } } } } waitingForVisit.push(rdd) while (!waitingForVisit.isEmpty) { visit(waitingForVisit.pop()) } parents.toList }
ActiveJob类
用户所提交的job在得到DAGScheduler的调度后,会被包装成ActiveJob,同时会启动JobWaiter阻塞监听job的完成状况。
同时依据job中RDD的dependency和dependency属性(NarrowDependency,ShufflerDependecy),DAGScheduler会根据依赖关系的先后产生出不同的stage DAG(result stage, shuffle map stage)。
在每一个stage内部,根据stage产生出相应的task,包括ResultTask或是ShuffleMapTask,这些task会根据RDD中partition的数量和分布,产生出一组相应的task,并将其包装为TaskSet提交到TaskScheduler上去。
/** * Tracks information about an active job in the DAGScheduler. */private[spark] class ActiveJob( val jobId: Int, val finalStage: Stage, val func: (TaskContext, Iterator[_]) => _, val partitions: Array[Int], val callSite: CallSite, val listener: JobListener, val properties: Properties) { val numPartitions = partitions.length val finished = Array.fill[Boolean](numPartitions)(false) var numFinished = 0}
submitStage函数
submitStage函数中会根据依赖关系划分stage,通过递归调用从finalStage一直往前找它的父stage,直到stage没有父stage时就调用submitMissingTasks方法提交改stage。这样就完成了将job划分为一个或者多个stage。
submitStage处理流程:
所依赖的Stage是否都已经完成,如果没有完成则先执行所依赖的Stage
如果所有的依赖已经完成,则提交自身所处的Stage
最后会在submitMissingTasks函数中将stage封装成TaskSet通过taskScheduler.submitTasks函数提交给TaskScheduler处理。
/** Submits stage, but first recursively submits any missing parents. */ private def submitStage(stage: Stage) { val jobId = activeJobForStage(stage) if (jobId.isDefined) { logDebug("submitStage(" + stage + ")") if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) { val missing = getMissingParentStages(stage).sortBy(_.id) // 根据final stage发现是否有parent stage logDebug("missing: " + missing) if (missing == Nil) { logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents") submitMissingTasks(stage, jobId.get) // 如果没有parent stage需要执行, 则直接submit当前stage } else { for (parent <- missing) { submitStage(parent) // 如果有parent stage,需要先submit parent, 因为stage之间需要顺序执行 } waitingStages += stage // 当前stage放到waitingStages中 } } } else { abortStage(stage, "No active job for stage " + stage.id) } }
getMissingParentStages
getMissingParentStages通过图的遍历,来找出所依赖的所有父Stage。
private def getMissingParentStages(stage: Stage): List[Stage] = { val missing = new HashSet[Stage] val visited = new HashSet[RDD[_]] // We are manually maintaining a stack here to prevent StackOverflowError // caused by recursively visiting val waitingForVisit = new Stack[RDD[_]] def visit(rdd: RDD[_]) { if (!visited(rdd)) { visited += rdd if (getCacheLocs(rdd).contains(Nil)) { for (dep <- rdd.dependencies) { dep match { case shufDep: ShuffleDependency[_, _, _] => // 如果发现ShuffleDependency, 说明遇到新的stage val mapStage = getShuffleMapStage(shufDep, stage.jobId) // check shuffleToMapStage, 如果该stage已经被创建则直接返回, 否则newStage if (!mapStage.isAvailable) { missing += mapStage } case narrowDep: NarrowDependency[_] => // 对于NarrowDependency, 说明仍然在这个stage中 waitingForVisit.push(narrowDep.rdd) } } } } } waitingForVisit.push(stage.rdd) while (!waitingForVisit.isEmpty) { visit(waitingForVisit.pop()) } missing.toList }
submitMissingTasks
可见无论是哪种stage,都是对于每个stage中的每个partitions创建task,并最终封装成TaskSet,将该stage提交给taskscheduler。
/** Called when stage's parents are available and we can now do its task. */ private def submitMissingTasks(stage: Stage, jobId: Int) { logDebug("submitMissingTasks(" + stage + ")") // Get our pending tasks and remember them in our pendingTasks entry stage.pendingTasks.clear() // First figure out the indexes of partition ids to compute. val partitionsToCompute: Seq[Int] = { if (stage.isShuffleMap) { (0 until stage.numPartitions).filter(id => stage.outputLocs(id) == Nil) } else { val job = stage.resultOfJob.get (0 until job.numPartitions).filter(id => !job.finished(id)) } } val properties = if (jobIdToActiveJob.contains(jobId)) { jobIdToActiveJob(stage.jobId).properties } else { // this stage will be assigned to "default" pool null } runningStages += stage // SparkListenerStageSubmitted should be posted before testing whether tasks are // serializable. If tasks are not serializable, a SparkListenerStageCompleted event // will be posted, which should always come after a corresponding SparkListenerStageSubmitted // event. stage.latestInfo = StageInfo.fromStage(stage, Some(partitionsToCompute.size)) outputCommitCoordinator.stageStart(stage.id) listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties)) // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times. // Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast // the serialized copy of the RDD and for each task we will deserialize it, which means each // task gets a different copy of the RDD. This provides stronger isolation between tasks that // might modify state of objects referenced in their closures. This is necessary in Hadoop // where the JobConf/Configuration object is not thread-safe. var taskBinary: Broadcast[Array[Byte]] = null try { // For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep). // For ResultTask, serialize and broadcast (rdd, func). val taskBinaryBytes: Array[Byte] = if (stage.isShuffleMap) { closureSerializer.serialize((stage.rdd, stage.shuffleDep.get) : AnyRef).array() } else { closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func) : AnyRef).array() } taskBinary = sc.broadcast(taskBinaryBytes) } catch { // In the case of a failure during serialization, abort the stage. case e: NotSerializableException => abortStage(stage, "Task not serializable: " + e.toString) runningStages -= stage return case NonFatal(e) => abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}") runningStages -= stage return } val tasks: Seq[Task[_]] = if (stage.isShuffleMap) { partitionsToCompute.map { id => val locs = getPreferredLocs(stage.rdd, id) val part = stage.rdd.partitions(id) new ShuffleMapTask(stage.id, taskBinary, part, locs) } } else { val job = stage.resultOfJob.get partitionsToCompute.map { id => val p: Int = job.partitions(id) val part = stage.rdd.partitions(p) val locs = getPreferredLocs(stage.rdd, p) new ResultTask(stage.id, taskBinary, part, locs, id) } } if (tasks.size > 0) { logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")") stage.pendingTasks ++= tasks logDebug("New pending tasks: " + stage.pendingTasks) taskScheduler.submitTasks( new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties)) stage.latestInfo.submissionTime = Some(clock.getTimeMillis()) } else { // Because we posted SparkListenerStageSubmitted earlier, we should mark // the stage as completed here in case there are no tasks to run markStageAsFinished(stage, None) logDebug("Stage " + stage + " is actually done; %b %d %d".format( stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions)) } }
转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
作者:JasonDing
链接:https://www.jianshu.com/p/d3b794567e2a