coalesce
官方文档描述:
Return a new RDD that is reduced into `numPartitions` partitions.
函数原型:
def coalesce(numPartitions: Int): JavaRDD[T]def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T]
源码分析:
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) : RDD[T] = withScope { if (shuffle) { /** Distributes elements evenly across output partitions, starting from a random partition. */ val distributePartition = (index: Int, items: Iterator[T]) => { var position = (new Random(index)).nextInt(numPartitions) items.map { t => // Note that the hash code of the key will just be the key itself. The HashPartitioner // will mod it with the number of total partitions. position = position + 1 (position, t) } } : Iterator[(Int, T)] // include a shuffle step so that our upstream tasks are still distributed new CoalescedRDD( new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition), new HashPartitioner(numPartitions)), numPartitions).values } else { new CoalescedRDD(this, numPartitions) } }
**
从源码中可以看出,当shuffle=false时,由于不进行shuffle,问题就变成parent RDD中哪些partition可以合并在一起,合并的过程依据设置的numPartitons中的元素个数进行合并处理。
当shuffle=true时,进行shuffle操作,原理很简单,先是对partition中record进行k-v转换,其中key是由 (new Random(index)).nextInt(numPartitions)+1计算得到,value为record,index 是该 partition 的索引,numPartitions 是 CoalescedRDD 中的 partition 个数,然后 shuffle 后得到 ShuffledRDD, 可以得到均分的 records,再经过复杂算法来建立 ShuffledRDD 和 CoalescedRDD 之间的数据联系,最后过滤掉 key,得到 coalesce 后的结果 MappedRDD。
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7); JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);// shuffle默认是falseJavaRDD<Integer> coalesceRDD = javaRDD.coalesce(2); System.out.println(coalesceRDD); JavaRDD<Integer> coalesceRDD1 = javaRDD.coalesce(2,true); System.out.println(coalesceRDD1);
注意:
**
coalesce() 可以将 parent RDD 的 partition 个数进行调整,比如从 5 个减少到 3 个,或者从 5 个增加到 10 个。需要注意的是当 shuffle = false 的时候,是不能增加 partition 个数的(即不能从 5 个变为 10 个)。
**
repartition
官网文档描述:
Return a new RDD that has exactly numPartitions partitions. Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data. If you are decreasing the number of partitions in this RDD, consider using `coalesce`,which can avoid performing a shuffle.
**
特别需要说明的是,如果使用repartition对RDD的partition数目进行缩减操作,可以使用coalesce函数,将shuffle设置为false,避免shuffle过程,提高效率。
**
函数原型:
def repartition(numPartitions: Int): JavaRDD[T]
源码分析:
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope { coalesce(numPartitions, shuffle = true) }
**
从源码中可以看到repartition等价于 coalesce(numPartitions, shuffle = true)
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7); JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);//等价于 coalesce(numPartitions, shuffle = true)JavaRDD<Integer> repartitionRDD = javaRDD.repartition(2); System.out.println(repartitionRDD);
作者:小飞_侠_kobe
链接:https://www.jianshu.com/p/a4fa4e559a8f