本文以 Elasticsearch 6.2.4为例。
经过前面的基础入门,我们对ES的基本操作也会了。现在来学习ES最强大的部分:全文检索。
准备工作
批量导入数据
先需要准备点数据,然后导入:
wget https://raw.githubusercontent.com/elastic/elasticsearch/master/docs/src/test/resources/accounts.json curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/account/_bulk" --data-binary "@accounts.json"
这样我们就导入了1000条数据到ES。
注意:
accounts.json
每行必须以\n
换行。如果提示The bulk request must be terminated by a newline [\n]
,请检查最后一行是否以\n
换行。
index是bank。我们可以查看现在有哪些index:
curl "localhost:9200/_cat/indices?format=json&pretty"
结果:
[ { "health" : "yellow", "status" : "open", "index" : "bank", "uuid" : "MDxR02uESgKSynX6k8B-og", "pri" : "5", "rep" : "1", "docs.count" : "1000", "docs.deleted" : "0", "store.size" : "474.6kb", "pri.store.size" : "474.6kb" } ]
使用kibana可视化数据
该小节是可选的,如果不感兴趣,可以跳过。
该小节要求你已经搭建好了ElasticSearch + Kibana。
打开kibana web地址:http://127.0.0.1:5601,依次打开:Management
-> Kibana
-> Index Patterns
,选择Create Index Pattern
:
a. Index pattern 输入:bank
;
b. 点击Create。
然后打开Discover,选择 bank
就能看到刚才导入的数据了。
我们在可视化界面里检索数据:
是不是很酷!
接下来我们使用API来实现检索。
查询
URI检索
uri检索是通过提供请求参数纯粹使用URI来执行搜索请求。
GET /bank/_search?q=Virginia&pretty GET /bank/_search?q=firstname:Virginia
curl:
curl -XGET "localhost:9200/bank/_search?q=Virginia&pretty"curl -XGET "localhost:9200/bank/_search?q=firstname:Virginia&pretty"
解释:检索关键字为"Virginia"的结果。结果示例:
{ "took": 4, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 4.631368, "hits": [ { "_index": "bank", "_type": "account", "_id": "298", "_score": 4.631368, "_source": { "account_number": 298, "balance": 34334, "firstname": "Bullock", "lastname": "Marsh", "age": 20, "gender": "M", "address": "589 Virginia Place", "employer": "Renovize", "email": "bullockmarsh@renovize.com", "city": "Coinjock", "state": "UT" } }, { "_index": "bank", "_type": "account", "_id": "25", "_score": 4.6146765, "_source": { "account_number": 25, "balance": 40540, "firstname": "Virginia", "lastname": "Ayala", "age": 39, "gender": "F", "address": "171 Putnam Avenue", "employer": "Filodyne", "email": "virginiaayala@filodyne.com", "city": "Nicholson", "state": "PA" } } ] } }
返回字段含义:
took – Elasticsearch执行搜索的时间(以毫秒为单位)
timed_out – 搜索是否超时
_shards – 搜索了多少个分片,以及搜索成功/失败分片的计数
hits – 搜索结果,是个对象
hits.total – 符合我们搜索条件的文档总数
hits.hits – 实际的搜索结果数组(默认为前10个文档)
hits.sort - 对结果进行排序(如果按score排序则没有该字段)
hits._score、max_score - 暂时忽略这些字段
参数:
q 查询字符串(映射到query_string查询)
df 在查询中未定义字段前缀时使用的默认字段。
analyzer 分析查询字符串时要使用的分析器名称。
sort 排序。可以是
fieldName
或fieldName:asc/
的形式fieldName:desc
。fieldName
可以是文档中的实际字段,也可以是特殊_score
名称,表示基于分数的排序。可以有几个sort参数(顺序很重要)。timeout 搜索超时。默认为无超时。
from 从命中的索引开始返回。默认为0。
size 要返回的点击次数。默认为10。
default_operator 要使用的默认运算符可以是AND或 OR。默认为OR。
详见: https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-uri-request.html
示例:
GET /bank/_search?q=*&sort=account_number:asc&pretty
解释:所有结果通过account_number字段升序排列。默认只返回前10条。
下面的查询与上面的含义一致:
GET /bank/_search { "query": { "multi_match" : { "query" : "Virginia", "fields" : ["_all"] } } } GET /bank/_search { "query": { "match_all": {} }, "sort": [ { "account_number": "asc" } ] }
通常我们会采用传JSON方式查询。Elasticsearch提供了一种JSON样式的特定于域的语言,可用于执行查询。这被称为查询DSL。
注意:上述的查询里面我们仅指定了index,并没有指定type,那么ES将不会区分type。如果想区分,请在URI后面追加type。示例:
GET /bank/account/_search
。
match查询
GET /bank/_search { "query" : { "match" : { "address" : "Avenue" } } }
curl:
curl -XGET -H "Content-Type: application/json" "localhost:9200/bank/_search?pretty" -d '{"query":{"match":{"address":"Avenue"}}}'
上述查询返回结果是address
含有Avenue
的结果。
term查询
GET /bank/_search { "query" : { "term" : { "address" : "Avenue" } } }
curl:
curl -XGET -H "Content-Type: application/json" "localhost:9200/bank/_search?pretty" -d '{"query":{"term":{"address":"Avenue"}}}'
上述查询返回结果是address
等于Avenue
的结果。
注:如果一个字段既需要分词搜索,又需要精准匹配,最好是一开始设置mapping的时候就设置正确。例如:通过增加
.keyword
字段来支持精准匹配:
{ "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }
这样相当于有
address
和address.keyword
两个字段。这个后面mapping章节再讲解。
分页(from/size)
分页使用关键字from、size,分别表示偏移量、分页大小。
GET /bank/_search { "query": { "match_all": {} }, "from": 0, "size": 2}
from默认是0,size默认是10。
注意:ES的from、size分页不是真正的分页,称之为浅分页。from+ size不能超过
index.max_result_window
默认为10,000
的索引设置。有关 更有效的深度滚动方法,请参阅 Scroll或 Search After API。
排序(sort)
字段排序关键字是sort。支持升序(asc)、降序(desc)。默认是对_score
字段进行排序。
GET /bank/_search { "query": { "match_all": {} }, "sort": [ { "account_number": "asc" } ], "from":0, "size":10}
按脚本排序
允许基于自定义脚本进行排序,这是一个示例:
GET bank/account/_search { "query": { "range": { "age": {"gt": 20} }}, "sort" : { "_script" : { "type" : "number", "script" : { "lang": "painless", "source": "doc['account_number'].value * params.factor", "params" : { "factor" : 1.1 } }, "order" : "asc" } } }
上述查询是使用脚本进行排序:按 account_number*1.1
的结果进行升序。其中lang
指的是使用的脚本语言类型为painless
。painless
支持Math.log
函数。
上述例子仅仅是演示使用方法,没有实际含义。
过滤字段
默认情况下,ES返回所有字段。这被称为源(_source
搜索命中中的字段)。如果我们不希望返回所有字段,我们可以只请求返回源中的几个字段。
GET /bank/_search { "query": { "match_all": {} }, "_source": ["account_number", "balance"] }
通过_source
关键字可以实现字段过滤。
返回脚本字段
可以通过脚本动态返回新定义字段。示例:
GET bank/account/_search { "query" : { "match_all": {} }, "size":2, "script_fields" : { "age2" : { "script" : { "lang": "painless", "source": "doc['age'].value * 2" } }, "age3" : { "script" : { "lang": "painless", "source": "params['_source']['age'] * params.factor", "params" : { "factor" : 2.0 } } } } }
结果:
{ "took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1000, "max_score": 1, "hits": [ { "_index": "bank", "_type": "account", "_id": "25", "_score": 1, "fields": { "age3": [ 78 ], "age2": [ 78 ] } }, { "_index": "bank", "_type": "account", "_id": "44", "_score": 1, "fields": { "age3": [ 74 ], "age2": [ 74 ] } } ] } }
注意:使用
doc['my_field_name'].value
比使用params['_source']['my_field_name']
更快更效率,推荐使用。
AND查询
如果我们想同时查询符合A和B字段的结果,该怎么查呢?可以使用must关键字组合。
GET /bank/_search { "query": { "bool": { "must": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } } GET /bank/_search { "query": { "bool": { "must": [ { "match": { "account_number":136 } }, { "match": { "address": "lane" } }, { "match": { "city": "Urie" } } ] } } }
must也等价于:
GET /bank/_search { "query": { "bool": { "must": [ { "match": { "address": "mill" } } ], "must": [ { "match": { "address": "lane" } } ] } } }
这种相当于先查询A再查询B,而上面的则是同时查询符合A和B,但结果是一样的,执行效率可能有差异。有知道原因的朋友可以告知。
OR查询
ES使用should关键字来实现OR查询。
GET /bank/_search { "query": { "bool": { "should": [ { "match": { "account_number":136 } }, { "match": { "address": "lane" } }, { "match": { "city": "Urie" } } ] } } }
AND取反查
must_not
关键字实现了既不包含A也不包含B的查询。
GET /bank/_search { "query": { "bool": { "must_not": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } }
表示 address 字段需要符合既不包含 mill 也不包含 lane。
布尔组合查询
我们可以组合 must 、should 、must_not 进行复杂的查询。
A AND NOT B
GET /bank/_search { "query": { "bool": { "must": [ { "match": { "age": 40 } } ], "must_not": [ { "match": { "state": "ID" } } ] } } }
相当于SQL:
select * from bank where age=40 and state!= "ID";
A AND (B OR C)
GET /bank/_search { "query":{ "bool":{ "must":[ {"match":{"age":39}}, {"bool":{"should":[ {"match":{"city":"Nicholson"}}, {"match":{"city":"Yardville"}} ]} } ] } } }
相当于SQL:
select * from bank where age=39 and (city="Nicholson" or city="Yardville");
范围查询
GET /bank/_search { "query": { "bool": { "must": { "match_all": {} }, "filter": { "range": { "balance": { "gte": 20000, "lte": 30000 } } } } } }
相当于SQL:
select * from bank where balance between 20000 and 30000;
多字段范围查询:
GET /bank/_search { "query": { "bool": { "must": { "match_all": {} }, "filter": { "bool":{ "must":[ {"range": {"balance": {"gte": 20000,"lte": 30000}}}, {"range": {"age": {"gte": 30}}} ] } } } } }
高亮结果
ES可以高亮返回结果里的关键字,使用html标记标出。
GET bank/account/_search { "query" : { "match": { "address": "Avenue" } }, "from": 0, "size": 1, "highlight" : { "require_field_match": false, "fields": { "*" : { } } } }
输出:
{ "took": 10, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 214, "max_score": 1.5814995, "hits": [ { "_index": "bank", "_type": "account", "_id": "102", "_score": 1.5814995, "_source": { "account_number": 102, "balance": 29712, "firstname": "Dena", "lastname": "Olson", "age": 27, "gender": "F", "address": "759 Newkirk Avenue", "employer": "Hinway", "email": "denaolson@hinway.com", "city": "Choctaw", "state": "NJ" }, "highlight": { "address": [ "759 Newkirk <em>Avenue</em>" ] } } ] } }
返回结果里的highlight
部分就是高亮结果,默认使用<em>
标出。如果需要修改,可以使用pre_tags
设置修改:
"fields": { "*" : { "pre_tags" : ["<strong>"], "post_tags" : ["</strong>"] } }
*
代表所有字段都高亮,也可以只高亮具体的字段,直接用具体字段替换*
即可。
require_field_match
:默认情况下,仅突出显示包含查询匹配的字段。设置require_field_match为false突出显示所有字段。默认为true。详见:https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-highlighting.html
聚合查询
GET /bank/_search { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword" } } } }
结果:
{ "took": 29, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped" : 0, "failed": 0 }, "hits" : { "total" : 1000, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "group_by_state" : { "doc_count_error_upper_bound": 20, "sum_other_doc_count": 770, "buckets" : [ { "key" : "ID", "doc_count" : 27 }, { "key" : "TX", "doc_count" : 27 }, { "key" : "AL", "doc_count" : 25 }, { "key" : "MD", "doc_count" : 25 }, { "key" : "TN", "doc_count" : 23 }, { "key" : "MA", "doc_count" : 21 }, { "key" : "NC", "doc_count" : 21 }, { "key" : "ND", "doc_count" : 21 }, { "key" : "ME", "doc_count" : 20 }, { "key" : "MO", "doc_count" : 20 } ] } } }
查询结果返回了ID州(Idaho)有27个账户,TX州(Texas)有27个账户。
相当于SQL:
SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC
该查询意思是按照字段state分组,返回前10个聚合结果。
其中size设置为0意思是不返回文档内容,仅返回聚合结果。state.keyword
表示字段精确匹配,因为使用模糊匹配性能很低,所以不支持。
多重聚合
我们可以在聚合的基础上再进行聚合,例如求和、求平均值等等。
GET /bank/_search { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } }
上述查询实现了在前一个聚合的基础上,按州计算平均帐户余额(同样仅针对按降序排序的前10个州)。
我们可以在聚合中任意嵌套聚合,以从数据中提取所需的统计数据。
在前一个聚合的基础上,我们现在按降序排列平均余额:
GET /bank/_search { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword", "order": { "average_balance": "desc" } }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } }
这里基于第二个聚合结果进行倒序排列。其实上一个例子隐藏了默认排序,也就是默认按照_sort
(分值)倒序:
GET /bank/_search { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword", "order": { "_sort": "desc" } }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } }
此示例演示了我们如何按年龄段(20-29岁,30-39岁和40-49岁)进行分组,然后按性别分组,最后得到每个年龄段的平均帐户余额:
GET /bank/_search { "size": 0, "aggs": { "group_by_age": { "range": { "field": "age", "ranges": [ { "from": 20, "to": 30 }, { "from": 30, "to": 40 }, { "from": 40, "to": 50 } ] }, "aggs": { "group_by_gender": { "terms": { "field": "gender.keyword" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } } } }
这个结果就复杂了,属于嵌套分组,结果也是嵌套的:
{ "took": 5, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1000, "max_score": 0, "hits": [] }, "aggregations": { "group_by_age": { "buckets": [ { "key": "20.0-30.0", "from": 20, "to": 30, "doc_count": 451, "group_by_gender": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "M", "doc_count": 232, "average_balance": { "value": 27374.05172413793 } }, { "key": "F", "doc_count": 219, "average_balance": { "value": 25341.260273972603 } } ] } }, { "key": "30.0-40.0", "from": 30, "to": 40, "doc_count": 504, "group_by_gender": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "F", "doc_count": 253, "average_balance": { "value": 25670.869565217392 } }, { "key": "M", "doc_count": 251, "average_balance": { "value": 24288.239043824702 } } ] } }, { "key": "40.0-50.0", "from": 40, "to": 50, "doc_count": 45, "group_by_gender": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "M", "doc_count": 24, "average_balance": { "value": 26474.958333333332 } }, { "key": "F", "doc_count": 21, "average_balance": { "value": 27992.571428571428 } } ] } } ] } } }
term与match查询
首先大家看下面的例子有什么区别:
已知条件:ES里address
为171 Putnam Avenue
的数据有1条;address
为Putnam
的数据有0条。index为bank,type为account,文档ID为25。
GET /bank/_search { "query": { "match" : { "address" : "Putnam" } } } GET /bank/_search { "query": { "match" : { "address.keyword" : "Putnam" } } } GET /bank/_search { "query": { "term" : { "address" : "Putnam" } } }
结果:
1、第一个能匹配到数据,因为会分词查询。
2、第二个不能匹配到数据,因为不分词的话没有该条数据。
3、结果不确定。需要看实际是怎么分词的。
我们通过下列查询可以知晓该条数据字段address
的分词情况:
GET /bank/account/25/_termvectors?fields=address
结果:
{ "_index": "bank", "_type": "account", "_id": "25", "_version": 1, "found": true, "took": 0, "term_vectors": { "address": { "field_statistics": { "sum_doc_freq": 591, "doc_count": 197, "sum_ttf": 591 }, "terms": { "171": { "term_freq": 1, "tokens": [ { "position": 0, "start_offset": 0, "end_offset": 3 } ] }, "avenue": { "term_freq": 1, "tokens": [ { "position": 2, "start_offset": 11, "end_offset": 17 } ] }, "putnam": { "term_freq": 1, "tokens": [ { "position": 1, "start_offset": 4, "end_offset": 10 } ] } } } } }
可以看出该条数据字段address
一共分了3个词:
171 avenue putnam
现在可以得出第三个查询的答案:匹配不到!但值改成小写的putnam
又能匹配到了!
原因是:
term query 查询的是倒排索引中确切的term
match query 会对filed进行分词操作,然后再查询
由于Putnam
不在分词里(大小写敏感),所以匹配不到。match query先对filed进行分词,也就是分成putnam
,再去匹配倒排索引中的term,所以能匹配到。
standard
analyzer 分词器分词默认会将大写字母全部转为小写字母。
参考
1、Getting Started | Elasticsearch Reference [6.2] | Elastic
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/getting-started.html
2、Elasticsearch 5.x 关于term query和match query的认识 - wangchuanfu - 博客园
https://www.cnblogs.com/wangchuanfu/p/7444253.html
作者:飞鸿影~
出处:https://www.cnblogs.com/52fhy/p/10014860.html