机器学习第十一天 决策树项目案例(1)
周末好鸭,8月真的巨忙,决策树2个案例实现后下周开始划水只看看各算法的基础概念了,等一个项目交付完
项目案例1:判断鱼类和非鱼类
项目概述
根据以下2个特征,将动物分成两类:鱼类和非鱼类。
特征:
1.不浮出水面是否可以生存
2.是否有脚蹼
开发流程
收集数据:可以使用任何方法 准备数据:树构造算法(这里使用的是ID3算法,因此数值型数据必须离散化。) 分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。 训练算法:构造树结构 测试算法:使用习得的决策树执行分类 使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义
收集数据:可以使用任何方法
我们使用createDataSet()函数输入数据
def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] return dataSet, labels
准备数据:树构造算法
此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。
分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。
熵的计算公式.jpg
计算给定数据集的香浓熵的函数
def calcShannonEnt(dataSet): # 求list的长度,表示计算参与训练的数据量 numEntries = len(dataSet) # 计算分类标签label出现的次数 labelCounts = {} # the the number of unique elements and their occurrence for featVec in dataSet: # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签 currentLabel = featVec[-1] # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。 if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 # 对于 label 标签的占比,求出 label 标签的香农熵 shannonEnt = 0.0 for key in labelCounts: # 使用所有类标签的发生频率计算类别出现的概率。 prob = float(labelCounts[key])/numEntries # 计算香农熵,以 2 为底求对数 shannonEnt -= prob * log(prob, 2) return shannonEnt
按照给定特征划分数据集
将指定特征的特征值等于 value 的行剩下列作为子数据集。
def splitDataSet(dataSet, index, value): """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行) 就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中 Args: dataSet 数据集 待划分的数据集 index 表示每一行的index列 划分数据集的特征 value 表示index列对应的value值 需要返回的特征的值。 Returns: index列为value的数据集【该数据集需要排除index列】 """ retDataSet = [] for featVec in dataSet: # index列为value的数据集【该数据集需要排除index列】 # 判断index列的值是否为value if featVec[index] == value: # chop out index used for splitting # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行 reducedFeatVec = featVec[:index] ''' 请百度查询一下: extend和append的区别 music_media.append(object) 向列表中添加一个对象object music_media.extend(sequence) 把一个序列seq的内容添加到列表中 (跟 += 在list运用类似, music_media += sequence) 1、使用append的时候,是将object看作一个对象,整体打包添加到music_media对象中。 2、使用extend的时候,是将sequence看作一个序列,将这个序列和music_media序列合并,并放在其后面。 music_media = [] music_media.extend([1,2,3]) print music_media #结果: #[1, 2, 3] music_media.append([4,5,6]) print music_media #结果: #[1, 2, 3, [4, 5, 6]] music_media.extend([7,8,9]) print music_media #结果: #[1, 2, 3, [4, 5, 6], 7, 8, 9] ''' reducedFeatVec.extend(featVec[index+1:]) # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据 # 收集结果值 index列为value的行【该行需要排除index列】 retDataSet.append(reducedFeatVec) return retDataSet
选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet): """chooseBestFeatureToSplit(选择最好的特征) Args: dataSet 数据集 Returns: bestFeature 最优的特征列 """ # 求第一行有多少列的 Feature, 最后一列是label列嘛 numFeatures = len(dataSet[0]) - 1 # 数据集的原始信息熵 baseEntropy = calcShannonEnt(dataSet) # 最优的信息增益值, 和最优的Featurn编号 bestInfoGain, bestFeature = 0.0, -1 # iterate over all the features for i in range(numFeatures): # create a list of all the examples of this feature # 获取对应的feature下的所有数据 featList = [example[i] for example in dataSet] # get a set of unique values # 获取剔重后的集合,使用set对list数据进行去重 uniqueVals = set(featList) # 创建一个临时的信息熵 newEntropy = 0.0 # 遍历某一列的value集合,计算该列的信息熵 # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) # 计算概率 prob = len(subDataSet)/float(len(dataSet)) # 计算信息熵 newEntropy += prob * calcShannonEnt(subDataSet) # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值 # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。 infoGain = baseEntropy - newEntropy print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy if (infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature
问:上面的 newEntropy 为什么是根据子集计算的呢? 答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0; 这就是为什么计算新的香农熵的时候使用的是子集。 训练算法:构造树的数据结构
训练算法:构造树的数据结构
创建树的函数代码如下:
def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行 # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。 # count() 函数是统计括号中的值在list中出现的次数 if classList.count(classList[0]) == len(classList): return classList[0] # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果 # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。 if len(dataSet[0]) == 1: return majorityCnt(classList) # 选择最优的列,得到最优列对应的label含义 bestFeat = chooseBestFeatureToSplit(dataSet) # 获取label的名称 bestFeatLabel = labels[bestFeat] # 初始化myTree myTree = {bestFeatLabel: {}} # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改 # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list del(labels[bestFeat]) # 取出最优列,然后它的branch做分类 featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: # 求出剩余的标签label subLabels = labels[:] # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree() myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) # print 'myTree', value, myTree return myTree
测试算法:使用决策树执行分类
def classify(inputTree, featLabels, testVec): """classify(给输入的节点,进行分类) Args: inputTree 决策树模型 featLabels Feature标签对应的名称 testVec 测试输入的数据 Returns: classLabel 分类的结果值,需要映射label才能知道名称 """ # 获取tree的根节点对于的key值 firstStr = inputTree.keys()[0] # 通过key得到根节点对应的value secondDict = inputTree[firstStr] # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类 featIndex = featLabels.index(firstStr) # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类 key = testVec[featIndex] valueOfFeat = secondDict[key] print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat # 判断分枝是否结束: 判断valueOfFeat是否是dict类型 if isinstance(valueOfFeat, dict): classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
作者:raphah
链接:https://www.jianshu.com/p/b2865be545a0