手记

1.4 神经网络入门-数据处理与模型图构建

1.4 数据处理与模型图构建

  • transflow 搭建 : https://www.tensorflow.org/install/install_mac?hl=zh_cn

  • 使用的是cifar-10 的数据集 https://www.cs.toronto.edu/~kriz/cifar.html

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

    CIFAR-10 下载下来的python版本文件目录结构如下

    (deeplearning-0jfGJJsa) ~/project/pycharm/deeplearning/01_nn ᐅ tree cifar-10-batches-py
    cifar-10-batches-py
    ├── batches.meta
    ├── data_batch_1 # 一共5个batch的训练数据集,每个batch中有10000张图片和对应的数据
    ├── data_batch_2
    ├── data_batch_3
    ├── data_batch_4
    ├── data_batch_5
    ├── readme.html
    └── test_batch # 测试数据集
    
    0 directories, 8 files
  • 关于jupyternotebook修改默认环境的文章:https://www.jianshu.com/p/f70ea020e6f9

  • 直观的显示一张图片

    • 导入数据集

import pickleimport numpy as npimport os

CIFAR_DIR = './cifar-10-batches-py'print(os.listdir(CIFAR_DIR))
  ['data_batch_1', 'readme.html', 'batches.meta', 'data_batch_2', 'data_batch_5', 'test_batch', 'data_batch_4', 'data_batch_3']
with open(os.path.join(CIFAR_DIR, "data_batch_1"), 'rb') as f:
    data = pickle.load(f, encoding='bytes')
    print(type(data))
    print(data.keys())
    print(type(data[b'data']))
    print(type(data[b'labels']))
    print(type(data[b'batch_label']))
    print(type(data[b'filenames']))
    print(data[b'data'].shape) # 32 * 32 (像素点)* 3(rbg三通道) # RR-GG-BB
    print(data[b'data'][0:2])
    print(data[b'labels'][0:2])
    print(data[b'batch_label'])
    print(data[b'filenames'][0:2])
  <class 'dict'>
  dict_keys([b'batch_label', b'labels', b'data', b'filenames'])
  <class 'numpy.ndarray'>
  <class 'list'>
  <class 'bytes'>
  <class 'list'>
  (10000, 3072)
  [[ 59  43  50 ... 140  84  72]
   [154 126 105 ... 139 142 144]]
  [6, 9]
  b'training batch 1 of 5'
  [b'leptodactylus_pentadactylus_s_000004.png', b'camion_s_000148.png']
  • 显示一张图片

image_arr = data[b'data'][100]
image_arr = image_arr.reshape((3,32,32)) # 需要32,32,3image_arr = image_arr.transpose((1,2,0))from matplotlib.pyplot import imshow

imshow(image_arr)
  <matplotlib.image.AxesImage at 0x12311e668>

image.png

  • 模型图构建

    import tensorflow as tfimport pickleimport numpy as npimport os
    
    CIFAR_DIR = './cifar-10-batches-py'print(os.listdir(CIFAR_DIR))def load_data(filename):
        """read data from data file."""
        with open(filename, 'rb') as f:
            data = pickle.load(f, 'bytes')        return data[b'data'], data[b'labels']# placeholder 占位符,可以代表一个变量,可以用来构建计算图,有数据来的时候就把数据传入# None 代表输入的样本数目是不确定的,3072 是变量的维度x = tf.placeholder(tf.float32, [None, 3072]) 
    y = tf.placeholder(tf.int64, [None]) # 只有一个维度就省略了# get_variable 如果已经定义了则使用,否则使用指定方式定义# 'w':变量名# [x.get_shape()[-1],1]: 指定变量的维度# initializer: 初始化变量的方式w = tf.get_variable('w', [x.get_shape()[-1],1], 
                       initializer = tf.random_normal_initializer(0, 1)) 
    b = tf.get_variable('b', [1], 
                       initializer = tf.constant_initializer(0.0))# matmul 矩阵乘法 # x (None,3072) w (3072,1) b(3072,1)# y_ = [None,3072]*[3072,1] + [3072,1] = [None,1]y_ = tf.matmul(x, w) + b# 激活函数 (None,1)p_y_1 = tf.nn.sigmoid(y_)# (None,1)y_reshaped = tf.reshape(y, (-1,1))
    y_reshaped_float = tf.cast(y_reshaped, tf.float32)
    loss = tf.reduce_mean(tf.square(y_reshaped_float - p_y_1))# boolpredict = p_y_1 > 0.5# [1,0,1,1,0,0,0]correct_prediction = tf.equal(tf.cast(predict,tf.int64), y_reshaped)# 3/7accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float64))with tf.name_scope('train_op'):    # AdamOptimizer 是梯度下降的一个变种,minimize指定在哪个变量上做
        train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)



作者:Meet相识_bfa5
链接:https://www.jianshu.com/p/4f228a695255


0人推荐
随时随地看视频
慕课网APP