手记

利用pandas对缺失值进行处理

许多原始数据集中会包含缺失值,这里总结一下常见的对缺失值的处理方式,以及如何通过pandas进行实际操作。

生成一个包含缺失值的DataFrame

通过如下代码,可以构造一个包含缺失值的DataFrame。这里用到一个小技巧,首先我们通过numpy的random方法构造了一个包含随机值的DataFrame,然后,用reindex方法添加了几个新的index,这样DataFrame里新增行的初始值就是NaN了。后面我们都通过这种方法,在原始DataFrame的基础上构造包含缺失值的DataFrame。

  • 代码:

import pandas as pdimport numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three'])
print(df)
print('\n')

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
  • 输出:

        one       two     threea -0.579503  0.423280  0.452675c -0.468805 -0.321307  0.891258e  0.168585  1.008384 -0.630137f  0.574003 -1.347813 -0.951535h -0.529655 -1.068217 -0.919875


        one       two     threea -0.579503  0.423280  0.452675b       NaN       NaN       NaNc -0.468805 -0.321307  0.891258d       NaN       NaN       NaNe  0.168585  1.008384 -0.630137f  0.574003 -1.347813 -0.951535g       NaN       NaN       NaNh -0.529655 -1.068217 -0.919875

缺失值检测

pandas提供了缺失值的检测方法isnull,该方法通过布尔值的形式反馈某个值是否为缺失值。这样就可以便于观测缺失值,以及后续进一步地通过编程的方法批量地处理缺失值。isnull还有一个镜像方法notnull,以应对不同的编程场景。

  • 代码:

import pandas as pdimport numpy as np
 
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print('\n')

print(df['one'].isnull())
  • 输出:

        one       two     threea -0.146791 -2.330160 -1.499680b       NaN       NaN       NaNc -1.581122  0.734590  0.152708d       NaN       NaN       NaNe  0.175039 -0.477513 -2.184527f  0.137429  2.458390 -0.452975g       NaN       NaN       NaNh  0.102433  0.729506  1.236861a    Falseb     Truec    Falsed     Truee    Falsef    Falseg     Trueh    FalseName: one, dtype: bool

缺失值在求和运算中的行为

如果对一个包含缺失值的列进行求和运算时,缺失值会被当作0来处理。

  • 代码:

import pandas as pdimport numpy as np

df = pd.DataFrame(np.random.randn(2, 3), index=['a', 'c'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c'])
print(df)
print('\n')
print(df['one'].sum())
  • 输出:

        one       two     threea -0.590257  0.941664 -0.320593b       NaN       NaN       NaNc -0.237803  0.196062  0.323316-0.8280594903026121

用一个标量值填充缺失值

最简单的缺失值处理方法就是指定一个标量值来进行填充,比如0。

  • 代码

import pandas as pdimport numpy as np
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print(df)
print("\nNaN replaced with '0':")
print(df.fillna(0))
  • 输出:

        one       two     three
a  0.667195 -2.287430  0.261266b       NaN       NaN       NaNc  0.568405 -0.860137 -1.784247NaN replaced with '0':
        one       two     three
a  0.667195 -2.287430  0.261266b  0.000000  0.000000  0.000000c  0.568405 -0.860137 -1.784247

用临近值填充缺失值

另一个思路是用缺失值附近的值来对其进行填充,这种方法适用于一段连续数据,例如时间序列。pandas提供了pad/fill方法来进行前向填充(用缺失值之前的数据来进行填充),也可以使用bfill/backfill方法来进行后向填充。

  • 代码

import pandas as pdimport numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)print ("\nNaN replaced with forward values:")print (df.fillna(method='pad'))
  • 输出:

        one       two     threea  1.669808 -0.034507 -1.756447b       NaN       NaN       NaNc  0.988920  0.496142  0.916299d       NaN       NaN       NaNe -1.081201 -0.385207 -0.850673f -1.094450  0.412084 -1.412251g       NaN       NaN       NaNh  0.786988  2.220630 -2.125072NaN replaced with forward values:        one       two     threea  1.669808 -0.034507 -1.756447b  1.669808 -0.034507 -1.756447c  0.988920  0.496142  0.916299d  0.988920  0.496142  0.916299e -1.081201 -0.385207 -0.850673f -1.094450  0.412084 -1.412251g -1.094450  0.412084 -1.412251h  0.786988  2.220630 -2.125072

丢失缺失值

与填充缺失值的思路相比,在数据量足够多或者对数据要求较高的情况下,丢失缺失值未尝不是一个好办法。pandas提供了dropna方法,该方法有一个参数axis(默认值是0),为0时表示丢弃行(通常是一个样本),为1时表示丢弃列(通常是一个特征),可以根据分析结果来选择具体的丢弃方式。下面的代码表示了如何丢弃一行。

  • 代码:

import pandas as pdimport numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print("\nNaN row dropped:")
print(df.dropna())
  • 输出:

        one       two     threea -0.493792  0.946581  2.640122b       NaN       NaN       NaNc -0.373698  0.461838 -1.692989d       NaN       NaN       NaNe  1.593574 -0.713764 -0.208575f  0.362406 -0.305731  0.400795g       NaN       NaN       NaNh -0.094171  1.114953 -0.038143NaN row dropped:        one       two     threea -0.493792  0.946581  2.640122c -0.373698  0.461838 -1.692989e  1.593574 -0.713764 -0.208575f  0.362406 -0.305731  0.400795h -0.094171  1.114953 -0.038143

总结

本文描述了对缺失值处理的一些常见思路和对应的方法,但在实际应用中,还需要结合数据本身来选择最合适的处理方式。



作者:schnauzer
链接:https://www.jianshu.com/p/5f5202531956


0人推荐
随时随地看视频
慕课网APP