一 Hadoop运行模式
(1)本地模式(默认模式): 不需要启用单独进程,直接可以运行, 测试和开发时使用。
(2)伪分布式模式: 等同于完全分布式,只有一个节点。
(3)完全分布式模式:多个节点一起运行。
下面是官网给出的原文:
This will display the usage documentation for the hadoop script.
Now you are ready to start your Hadoop cluster in one of the three supported modes:
二 官网提供案例
1) grep
首先创建inputForGrep目录存放输入文件
cp etc/hadoop/*.xml inputForGrep/ 将hadoop下面的所有xml文件cp到输入文件下面用于处理
执行以下grep命令
查看运行结果
2) wordcount
创建wcinput
创建wc.input
执行wordcount命令
查看运行结果:
三 查看源码
通过反编译查看运行grep和wordcount的源码,如下:
package org.apache.hadoop.examples;
import java.io.PrintStream;
import java.util.Random;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.LongWritable.DecreasingComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.map.InverseMapper;
import org.apache.hadoop.mapreduce.lib.map.RegexMapper;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.LongSumReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Grep
extends Configured
implements Tool
{
public int run(String[] args)
throws Exception
{
if (args.length < 3)
{
System.out.println("Grep <inDir> <outDir> <regex> [<group>]");
ToolRunner.printGenericCommandUsage(System.out);
return 2;
}
Path tempDir = new Path("grep-temp-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE)));
Configuration conf = getConf();
conf.set(RegexMapper.PATTERN, args[2]);
if (args.length == 4) {
conf.set(RegexMapper.GROUP, args[3]);
}
Job grepJob = Job.getInstance(conf);
try
{
grepJob.setJobName("grep-search");
grepJob.setJarByClass(Grep.class);
FileInputFormat.setInputPaths(grepJob, args[0]);
grepJob.setMapperClass(RegexMapper.class);
grepJob.setCombinerClass(LongSumReducer.class);
grepJob.setReducerClass(LongSumReducer.class);
FileOutputFormat.setOutputPath(grepJob, tempDir);
grepJob.setOutputFormatClass(SequenceFileOutputFormat.class);
grepJob.setOutputKeyClass(Text.class);
grepJob.setOutputValueClass(LongWritable.class);
grepJob.waitForCompletion(true);
Job sortJob = Job.getInstance(conf);
sortJob.setJobName("grep-sort");
sortJob.setJarByClass(Grep.class);
FileInputFormat.setInputPaths(sortJob, new Path[] { tempDir });
sortJob.setInputFormatClass(SequenceFileInputFormat.class);
sortJob.setMapperClass(InverseMapper.class);
sortJob.setNumReduceTasks(1);
FileOutputFormat.setOutputPath(sortJob, new Path(args[1]));
sortJob.setSortComparatorClass(LongWritable.DecreasingComparator.class);
sortJob.waitForCompletion(true);
}
finally
{
FileSystem.get(conf).delete(tempDir, true);
}
return 0;
}
public static void main(String[] args)
throws Exception
{
int res = ToolRunner.run(new Configuration(), new Grep(), args);
System.exit(res);
}
}package org.apache.hadoop.examples;
import java.io.IOException;
import java.io.PrintStream;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount
{
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>
{
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
this.result.set(sum);
context.write(key, this.result);
}
}
public static void main(String[] args)
throws Exception
{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2)
{
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; i++) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[(otherArgs.length - 1)]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}