继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Parallel.For 你可能忽视的一个非常实用的重载方法

android零基础入门
关注TA
已关注
手记 288
粉丝 97
获赞 603

  说起Parallel.For大家都不会陌生,很简单,不就是一个提供并行功能的for循环吗? 或许大家平时使用到的差不多就是其中最简单的那个重载方法,而真实情况

下Parallel.For里面有14个重载,而其中那些比较复杂的重载方法,或许还有同学还不知道怎么用呢~~~ 刚好我最近我有应用场景了,给大家介绍介绍,废话不多说,

先给大家看一下这个并行方法的重载一览表吧。。。

 

一:遇到的场景

     我遇到的场景是这样的,项目中有这样一个功能,这个功能需要根据多个维度对一组customerIDList进行筛选,最后求得多个维度所筛选出客户的并集,我举个

例子:现有8个维度:

1. 交易行为

2.营销活动

3.地区

4.新老客户

5.营销渠道

6.客户属性

7.客户分组

8.商品

每个维度都能筛选出一批customerid出来,然后对8组customerid求并集,这种场景很明显要提升性能的话,你必须要做并行处理,当然能够实现的方式有很多种,

比如我定义8个task<T>,然后使用WaitAll等待一下,最后再累计每个Result的结果就可以了,代码如下:

复制代码

 1 class Program 2 { 3     static void Main(string[] args) 4     { 5         List<string> rankList = Enum.GetNames(typeof(FilterType)).ToList(); 6  7         Task<HashSet<int>>[] tasks = new Task<HashSet<int>>[rankList.Count]; 8  9         var hashCustomerIDList = new HashSet<int>();  //求customerid的并集10 11         for (int i = 0; i < tasks.Length; i++)12         {13             tasks[i] = Task.Factory.StartNew<HashSet<int>>((obj) =>14             {15                 //业务方法,耗损性能中。。。16                 var smallCustomerIDHash = GetXXXMethod(rankList[(int)obj]);17 18                 return smallCustomerIDHash;19             }, i);20         }21 22         Task.WaitAll(tasks);23 24         foreach (var task in tasks)25         {26             foreach (var item in task.Result)27             {28                 hashCustomerIDList.Add(item);29             }30         }31     }32 33     static HashSet<int> GetXXXMethod(string rank)34     {35         return new HashSet<int>();36     }37 38     public enum FilterType39     {40         交易行为 = 1,41         营销活动 = 2,42         地区 = 4,43         新老客户 = 8,44         营销渠道 = 16,45         客户属性 = 32,46         客户分组 = 64,47         商品 = 12848     }49 }

复制代码

      上面的代码的逻辑还是很简单的,我使用的是Task<T>的模式,当然你也可以用void形式的Task,然后在里面lock代码的时候对hashCustomerIDList进行

插入,实现起来也是非常简单的,我就不演示了,那下面的问题来了,有没有更爽更直接的方式,看人家看上去更有档次一点的方法,而且还要达到这种效果呢?

 

二:Parallel.For复杂重载

 回到文章开头的话题,首先我们仔细分析一下下面这个复杂的重载方法。

复制代码

 1  // 2         // 摘要: 3         //     执行具有线程本地数据的 for(在 Visual Basic 中为 For)循环,其中可能会并行运行迭代,而且可以监视和操作循环的状态。 4         // 5         // 参数: 6         //   fromInclusive: 7         //     开始索引(含)。 8         // 9         //   toExclusive:10         //     结束索引(不含)。11         //12         //   localInit:13         //     用于返回每个任务的本地数据的初始状态的函数委托。14         //15         //   body:16         //     将为每个迭代调用一次的委托。17         //18         //   localFinally:19         //     用于对每个任务的本地状态执行一个最终操作的委托。20         //21         // 类型参数:22         //   TLocal:23         //     线程本地数据的类型。24         //25         // 返回结果:26         //     包含有关已完成的循环部分的信息的结构。27         //28         // 异常:29         //   T:System.ArgumentNullException:30         //     body 参数为 null。- 或 -localInit 参数为 null。- 或 -localFinally 参数为 null。31         //32         //   T:System.AggregateException:33         //     包含在所有线程上引发的全部单个异常的异常。34         public static ParallelLoopResult For<TLocal>(int fromInclusive, int toExclusive, Func<TLocal> localInit, Func<int, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally);

复制代码

 

从上面的代码区域中看,你可以看到上面提供了5个参数,而最后意思的就是后面三个,如果你对linq的扩展方法比较熟悉的话,你会发现这个其实就是一个并行版本

的累加器(Aggregate)操作,因为他们都是具有三个区域:第一个区域就是初始化区域(localInit),就是累积之前的一个初始化操作,第二个区域其实就是一个迭代

区域,说白了就是foreach/for循环,for循环之中,会把计算结果累计到当初初始化区域设置的变量中,第三个区域就是foreach/for之后的一个最终计算区,三者合起

来就是一个并行累加器,为了方便大家更好的理解,我就扒一下源码给大家看看:

 

 由于图太大,就截两张图了,大家一定要仔细体会一下这里面的tlocal变量,因为这个tlocal的使用贯穿着三个区域,所以大家一定要好好体会下面这几句代码

复制代码

1 TLocal tLocal = default(TLocal);2 3 tLocal = localInit();4 5 while(xxx<xxx){6 tLocal = bodyWithLocal(num5, parallelLoopState, tLocal);7 }8 localFinally(tLocal);

复制代码

 

      当你理解了tLocal具有累积foreach中的item结果之后,你就应该很明白下面这个body=>(item, loop, total) 和 finally => (total) 中total的含义了,

对吧,当你明白了,然后大家可以看看下面这段代码,是不是用一个方法就搞定了原来需要分阶段实现的一个业务逻辑呢?

复制代码

 1 class Program 2 { 3     static void Main(string[] args) 4     { 5         List<string> rankList = Enum.GetNames(typeof(FilterType)).ToList(); 6  7         var hashCustomerIDList = new HashSet<int>();  //求customerid的并集 8  9         //并行计算 7个 维度的 总和10         Parallel.For(0, rankList.Count, () => { return new List<int>(); }, (item, loop, total) =>11         {12             //业务方法,耗损性能中。。。13             var smallCustomerIDHash = GetXXXMethod(rankList[item]);14 15             total.AddRange(smallCustomerIDHash);16 17             return total;18         }, (total) =>19         {20             lock (hashCustomerIDList)21             {22                 foreach (var customerID in total)23                 {24                     hashCustomerIDList.Add(customerID);25                 }26             } 27         });28     }29 30     static HashSet<int> GetXXXMethod(string rank)31     {32         return new HashSet<int>();33     }34 35     public enum FilterType36     {37         交易行为 = 1,38         营销活动 = 2,39         地区 = 4,40         新老客户 = 8,41         营销渠道 = 16,42         客户属性 = 32,43         客户分组 = 64,44         商品 = 12845     }46 }

复制代码

   好了,本篇就先说这么多,希望这个具有并行累加器效果的Parallel.For能够给你带来一丝灵感~~~

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP