继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

玩转数据结构之二分搜索树(Binary Search Tree)

侠客岛的含笑
关注TA
已关注
手记 133
粉丝 1.6万
获赞 1807

图片描述

  • 平衡二叉树;AVL;红黑树
  • 堆;并查集
  • 线段树;Trie(字典树,前缀树)

图片描述

Basic BSt

public class BST<E extends Comparable<E>> {

    private class Node {
        public E e;
        public Node left, right;

        public Node(E e) {
            this.e = e;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BST(){
        root = null;
        size = 0;
    }

    public int size(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }
}

添加新元素

public class BST<E extends Comparable<E>> {

    private class Node {
        public E e;
        public Node left, right;

        public Node(E e) {
            this.e = e;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BST(){
        root = null;
        size = 0;
    }

    public int size(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 向二分搜索树中添加新的元素e
    public void add(E e){

        if(root == null){
            root = new Node(e);
            size ++;
        }
        else
            add(root, e);
    }

    // 向以node为根的二分搜索树中插入元素e,递归算法
    private void add(Node node, E e){
        if(e.equals(node.e))
            return;
        else if(e.compareTo(node.e) < 0 && node.left == null){
            node.left = new Node(e);
            size ++;
            return;
        }
        else if(e.compareTo(node.e) > 0 && node.right == null){
            node.right = new Node(e);
            size ++;
            return;
        }

        if(e.compareTo(node.e) < 0)
            add(node.left, e);
        else //e.compareTo(node.e) > 0
            add(node.right, e);
    }
}

改进(完善添加,增加查询)

public class BST<E extends Comparable<E>> {

    private class Node {
        public E e;
        public Node left, right;

        public Node(E e) {
            this.e = e;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BST(){
        root = null;
        size = 0;
    }

    public int size(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 向二分搜索树中添加新的元素e
    public void add(E e){
        root = add(root, e);
    }

    // 向以node为根的二分搜索树中插入元素e,递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, E e){
        if(node == null){
            size ++;
            return new Node(e);
        }

        if(e.compareTo(node.e) < 0)
            node.left = add(node.left, e);
        else if(e.compareTo(node.e) > 0)
            node.right = add(node.right, e);

        return node;
    }

    // 看二分搜索树中是否包含元素e
    public boolean contains(E e){
        return contains(root, e);
    }

    // 看以node为根的二分搜索树中是否包含元素e, 递归算法
    private boolean contains(Node node, E e){

        if(node == null)
            return false;

        if(e.compareTo(node.e) == 0)
            return true;
        else if(e.compareTo(node.e) < 0)
            return contains(node.left, e);
        else // e.compareTo(node.e) > 0
            return contains(node.right, e);
    }
}

前序遍历

    // 二分搜索树的前序遍历
    public void preOrder(){
        preOrder(root);
    }

    // 前序遍历以node为根的二分搜索树, 递归算法
    private void preOrder(Node node){
        if(node == null)
            return;

        System.out.println(node.e);
        preOrder(node.left);
        preOrder(node.right);
    }

    @Override
    public String toString(){
        StringBuilder res = new StringBuilder();
        generateBSTString(root, 0, res);
        return res.toString();
    }

    // 生成以node为根节点,深度为depth的描述二叉树的字符串
    private void generateBSTString(Node node, int depth, StringBuilder res){

        if(node == null){
            res.append(generateDepthString(depth) + "null\n");
            return;
        }

        res.append(generateDepthString(depth) + node.e + "\n");
        generateBSTString(node.left, depth + 1, res);
        generateBSTString(node.right, depth + 1, res);
    }

    private String generateDepthString(int depth){
        StringBuilder res = new StringBuilder();
        for(int i = 0 ; i < depth ; i ++)
            res.append("--");
        return res.toString();
    }
}

中序(InOrder) 后序(PostOrder)

图片描述

 // 二分搜索树的中序遍历
    public void inOrder(){
        inOrder(root);
    }

    // 中序遍历以node为根的二分搜索树, 递归算法
    private void inOrder(Node node){
        if(node == null)
            return;

        inOrder(node.left);
        System.out.println(node.e);
        inOrder(node.right);
    }

    // 二分搜索树的后序遍历
    public void postOrder(){
        postOrder(root);
    }

    // 后序遍历以node为根的二分搜索树, 递归算法
    private void postOrder(Node node){
        if(node == null)
            return;

        postOrder(node.left);
        postOrder(node.right);
        System.out.println(node.e);
    }

深入理解前中后

图片描述

二分搜索树前序非递归写法

图片描述
图片描述

    // 二分搜索树的非递归前序遍历
    public void preOrderNR(){

        Stack<Node> stack = new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            Node cur = stack.pop();
            System.out.println(cur.e);

            if(cur.right != null)
                stack.push(cur.right);
            if(cur.left != null)
                stack.push(cur.left);
        }
    }

二分搜索树的层序遍历(广度优先遍历)

一般使用非递归的队列方式实现
由于队列的顺序是先进先出,所以是从左到右入队的。

图片描述

 // 二分搜索树的层序遍历
    public void levelOrder(){

        if(root == null)
            return;

        Queue<Node> q = new LinkedList<>();
        q.add(root);
        while(!q.isEmpty()){
            Node cur = q.remove();
            System.out.println(cur.e);

            if(cur.left != null)
                q.add(cur.left);
            if(cur.right != null)
                q.add(cur.right);
        }
    }

广度优先的遍历

  • 更快的找到问题的解
  • 常用于算法设计中,最短路径(无权图)

    二分搜索树删除节点(最大元素,最小元素)

    图片描述
    图片描述

    // 寻找二分搜索树的最小元素
    public E minimum(){
        if(size == 0)
            throw new IllegalArgumentException("BST is empty");
    
        Node minNode = minimum(root);
        return minNode.e;
    }
    
    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if( node.left == null )
            return node;
    
        return minimum(node.left);
    }
    
    // 寻找二分搜索树的最大元素
    public E maximum(){
        if(size == 0)
            throw new IllegalArgumentException("BST is empty");
    
        return maximum(root).e;
    }
    
    // 返回以node为根的二分搜索树的最大值所在的节点
    private Node maximum(Node node){
        if( node.right == null )
            return node;
    
        return maximum(node.right);
    }
    
    // 从二分搜索树中删除最小值所在节点, 返回最小值
    public E removeMin(){
        E ret = minimum();
        root = removeMin(root);
        return ret;
    }
    
    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){
        // 处理递归到底的情况。
        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }
    
        node.left = removeMin(node.left);
        return node;
    }
    
    // 从二分搜索树中删除最大值所在节点
    public E removeMax(){
        E ret = maximum();
        root = removeMax(root);
        return ret;
    }
    
    // 删除掉以node为根的二分搜索树中的最大节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMax(Node node){
    
        if(node.right == null){
            Node leftNode = node.left;
            node.left = null;
            size --;
            return leftNode;
        }
    
        node.right = removeMax(node.right);
        return node;
    }

    删除二分搜索树中的任意节点

    如果只有一边的节点,删除方法跟上面类似。如果有两个,方法如下图。

图片描述
图片描述

 // 删除掉以node为根的二分搜索树中值为e的节点, 递归算法
    // 返回删除节点后新的二分搜索树的根
    private Node remove(Node node, E e){

        if( node == null )
            return null;

        if( e.compareTo(node.e) < 0 ){
            node.left = remove(node.left , e);
            return node;
        }
        else if(e.compareTo(node.e) > 0 ){
            node.right = remove(node.right, e);
            return node;
        }
        else{   // e.compareTo(node.e) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }

            // 待删除节点右子树为空的情况
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }

            // 待删除节点左右子树均不为空的情况

            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
            // 用这个节点顶替待删除节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;

            return successor;
        }
    }

二分搜索树的顺序性

  • 使用中序遍历数组就是有序的(小到大)
  • minimum,maximum
  • successor,predecessor
  • floor ceil
  • rank(给出一个元素,看其排名是第几) select(排名第几的元素是什么)

图片描述
图片描述

练习

图片描述

打开App,阅读手记
11人推荐
发表评论
随时随地看视频慕课网APP

热门评论

写的很好,学到了


查看全部评论