继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

MySQL为什么"错误"选择代价更大的索引

GreatSQL社区
关注TA
已关注
手记 112
粉丝 6
获赞 66

MySQL优化器索引选择迷思。

高鹏(八怪)对本文亦有贡献。

1. 问题描述

群友提出问题,表里有两个列c1、c2,分别为INT、VARCHAR类型,且分别创建了unique key。

SQL查询的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行计划,发现优化器优先选择了VARCHAR类型的c2列索引。

他表示很不理解,难道不应该选择看起来代价更小的INT类型的c1列吗?

2. 问题复现

创建测试表t1:

[root@yejr.run]> CREATE TABLE `t1` (
  `c1` int NOT NULL AUTO_INCREMENT,
  `c2` int unsigned NOT NULL,
  `c3` varchar(20) NOT NULL,
  `c4` varchar(20) NOT NULL,
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k3` (`c3`),
  UNIQUE KEY `k2` (`c2`)
) ENGINE=InnoDB;

利用 mysql_random_data_load 写入一万行数据:

mysql_random_data_load -h127.0.0.1 -uX -pX yejr t1 10000

查看执行计划:

[root@yejr.run]> EXPLAIN SELECT * FROM t1 WHERE
 c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: const
possible_keys: k3,k2
          key: k3
      key_len: 82
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL

可以看到优化器的确选择了 k3 索引,而非"预期"的 k2 索引,这是为什么呢?

3. 问题分析

其实原因很简单粗暴:优化器认为这两个索引选择的代价都是一样的,只是优先选中排在前面的那个索引而已。

再建一个相同的表 t2,只不过把 k2、k3 的索引创建顺序对调下:

[root@yejr.run]> CREATE TABLE `t2` (
  `c1` int NOT NULL AUTO_INCREMENT,
  `c2` int unsigned NOT NULL,
  `c3` varchar(20) NOT NULL,
  `c4` varchar(20) NOT NULL,
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k2` (`c2`),
  UNIQUE KEY `k3` (`c3`)
) ENGINE=InnoDB;

再查看执行计划:

[root@yejr.run]> EXPLAIN SELECT * FROM t2 WHERE
 c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: const
possible_keys: k2,k3
          key: k2
      key_len: 4
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL

我们利用 EXPLAIN ANALYZE 来查看下两次执行计划的代价对比:

-- 查看t1表执行计划代价
[root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t1 WHERE
  c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
*************************** 1. row ***************************
EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)

-- 查看t2表执行计划代价
[root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t2 WHERE  c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
*************************** 1. row ***************************
EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)

可以看到,很明显代价都是一样的。

再利用 OPTIMIZE_TRACE 查看执行计划,也能看到两个SQL的代价是一样的:

...
          {
            "rows_estimation": [
              {
                "table": "`t1`",
                "rows": 1,
                "cost": 1,
                "table_type": "const",
                "empty": false
              }
            ]
          },
...

所以,优化器认为选择哪个索引都是一样的,就看哪个索引排序更靠前。

从执行SELECT时的debug trace结果也能佐证:

-- 1、 T1表,k3索引在前面
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k3` (`c3`),
  UNIQUE KEY `k2` (`c2`)
  
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c3"   (C3在前面,因此最后使用k3)
T@2: | | | | | | | | >convert_string
T@2: | | | | | | | | | >alloc_root
T@2: | | | | | | | | | | enter: root: 0x40a8068
T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
T@2: | | | | | | | | | <alloc_root 304
T@2: | | | | | | | | <convert_string 2610
T@2: | | | | | | | | opt: equals: "'Louise Garrett'" 
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c2"
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c2"
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
T@2: | | | | | | | | opt: (null): ending struct

-- 2、 T2表,k2索引在前面
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k2` (`c2`),
  UNIQUE KEY `k3` (`c3`)
  
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t2`"
T@2: | | | | | | | | opt: field: "c2" (C2在前面因此使用k2索引)
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t2`"
T@2: | | | | | | | | opt: field: "c3"
T@2: | | | | | | | | >convert_string
T@2: | | | | | | | | | >alloc_root
T@2: | | | | | | | | | | enter: root: 0x40a8068
T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
T@2: | | | | | | | | | <alloc_root 304
T@2: | | | | | | | | <convert_string 2610
T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
T@2: | | | | | | | | opt: (null): ending struct

4. 问题延伸

到这里,我们不禁有疑问,这两个索引的代价真的是一样吗?

就让我们用 mysqlslap 来做个简单对比测试吧:

-- 测试1:对c2列随机point select
mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8
...
    Average number of seconds to run all queries: 9.483 seconds
...


-- 测试2:对c3列随机point select
mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8
...
    Average number of seconds to run all queries: 10.360 seconds
...

可以看到,如果是走 c3 列索引,耗时会比走 c2 列索引多出来约 7% ~ 9%(在我的环境下测试的结果,不同环境、不同数据量可能也不同)。

看来,MySQL优化器还是有必要进一步提高的哟 :)

测试使用版本:GreatSQL 8.0.25(MySQL 5.6.39结果亦是如此)。

Enjoy GreatSQL :)

打开App,阅读手记
1人推荐
发表评论
随时随地看视频慕课网APP