继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Python装饰器

职场亮哥
关注TA
已关注
手记 75
粉丝 0
获赞 4

引入装饰器

如果想在一个函数执行前后执行一些别的代码,比如打印一点日志用来输出这个函数的调用情况那应该怎么做呢?

#!/usr/bin/env python
# coding=utf-8

def logger(fn):									# 函数作为参数即fn可以为任何参数
    def wrap(*args, **kwargs):					# 可变参数args和kwargs
        print('call {}'.format(fn.__name__))	
        ret = fn(*args, **kwargs)				# 函数调用时的参数解构
        print('{} called'.format(fn.__name__))
        return ret								# 返回函数的返回值
    return wrap

def add(x, y):
    return x + y

logger_add = logger(add)
print(logger_add.__name__)
print(logger_add)
ret = logger_add(3, 5)
print(ret)

#输出结果:
wrap
.wrap at 0x7fba35f4fe18>
call add
add called
8

也可以用以下方式来实现这种效果

@logger                                                                                  
def add(x, y):                                                                            
	return x + y                                                                         ret = add(3, 5)                                                                      
print(ret) 

# 输出结果:
call add
add called
8

这就是Python装饰器的一个简单使用

什么是装饰器?

装饰器是用于软件设计模式的名称。 装饰器可以动态地改变函数,方法或类的功能,而不必直接使用子类或改变被装饰的函数的源代码。Python装饰器是对Python语法的一种特殊改变,它允许我们更方便地修改函数,方法以及类。

当我们按照以下方式编写代码时:

@logger
def add(x, y):
	...

和单独执行下面的步骤是一样的:

def add(x, y):
	...
logger_add = logger(add)

装饰器内部的代码一般会创建一个新的函数,利用*args**kwargs来接受任意的参数,上述代码中的wrap()函数就是这样的。在这个函数内部,我们需要调用原来的输入函数(即被包装的函数,它是装饰器的输入参数)并返回它的结果。但是也可以添加任何想要添加的代码,比如在上述代码中输出函数的调用情况,也可以添加计时处理等等。这个新创建的wrap函数会作为装饰器的结果返回,取代了原来的函数。

所以在Python中,装饰器的参数是一个函数, 返回值是一个函数的函数

装饰器的示例:计时处理

写一个装饰器,用来计算一个函数的执行时间

import time

def timethis(fn):
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(fn.__name__, end - start)
        return ret
    return wrap

如果要对add函数计时:

@timethis
def add(x, y):
    return x + y

ret = add(3, 5)
print(ret)

# 输出结果
add 1.9073486328125e-06
8

如果要对sleep函数计时:

@timethis
def sleep(x):
    time.sleep(x)

sleep(3)

# 输出结果
sleep 3.003262519836426

保存被装饰函数的元信息

什么是函数的元信息

比如装饰器的名称,装饰器的doc等等。我们可以使用dir函数列出函数的所有元信息:dir(sleep),输出结果如下

['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribute__', '__globals__', '__gt__', '__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', '__module__', '__name__', '__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']

可以看到有很多的元信息,我们比较常用的是__name____doc__这两个属性\

而且__doc__属性也就是函数的文档信息,可以通过help函数查看得到

为什么要保存被装饰函数的元信息

改写装饰器的应用1:计时处理中的sleep函数如下:

@timeit
def sleep(x):
    '''This function is sleep.'''
    time.sleep(x)

sleep(3)
print(sleep.__name__)
print(sleep.__doc__)

以上代码输出结果如下:

3.0032713413238525
wrap
None

可以发现sleep函数的__name__是wrap,而不是sleep,而__doc__属性为空,而不是sleep函数的docstring。也就是说经过装饰器装饰过后的函数的元信息发生了改变,这时候如果程序需要函数的元信息,那么就有问题了。

如何保存被装饰函数的元信息

方案1:手动给被装饰函数的元信息赋值

__name____doc__这两个属性为例

import time

def timeit(fn):
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(end - start)
        return ret
    wrap.__doc__ = fn.__doc__	# 手动赋值__doc__信息
    wrap.__name__ = fn.__name__	# 手动赋值__name__信息
    return wrap

@timeit
def sleep(x):
    '''This function is sleep.'''
    time.sleep(x)

if __name__ == "__main__":
    sleep(3)
    # print(dir(sleep))
    print(sleep.__name__)
    print(sleep.__doc__)

输出结果如下

3.004547119140625
sleep
This function is sleep.

可以发现,__name____doc__这两个属性确实赋值成功了。

我们可以将元信息赋值的过程改写为函数,如下

import time


def copy_properties(src, dst):	# 将元信息赋值的过程改成函数copy_properties
    dst.__name__ = src.__name__
    dst.__doc__ = src.__doc__

def timeit(fn):
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(end - start)
        return ret
    copy_properties(fn, wrap)	# 调用copy_properties函数修改元信息
    return wrap

@timeit
def sleep(x):
    '''This function is sleep.'''
    time.sleep(x)

if __name__ == "__main__":
    sleep(3)
    # print(dir(sleep))
    print(sleep.__name__)
    print(sleep.__doc__)

这样修改后,同样可以解决问题。

继续修改copy_properties函数,使得copy_properties可以返回一个函数

def copy_properties(src):
    def _copy(dst):	# 内置一个_copy函数便于返回
        dst.__name__ = src.__name__
        dst.__doc__ = src.__doc__
    return _copy

def timeit(fn):
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(end - start)
        return ret
    copy_properties(fn)(wrap)	# 调用copy_properties函数
    return wrap

同样可以问题。

如果继续修改copy_properties函数,使得_copy函数是一个装饰器,传入dst,返回dst,修改如下:

def copy_properties(src):	# 先固定dst,传入src
    def _copy(dst):	# 传入dst
        dst.__name__ = src.__name__
        dst.__doc__ = src.__doc__
        return dst	# 返回dst
    return _copy	# 返回一个装饰器

def timeit(fn):
    @copy_properties(fn)	# 带参数装饰器的使用方法
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(end - start)
        return ret
    return wrap

copy_properties在此处返回一个带参数的装饰器,因此可以直接按照装饰器的使用方法来装饰wrap函数,这个修改copy_properties函数的过程称为函数的柯里化。

方案2:使用functools库的@wraps装饰器

functools库的@wraps装饰器本质上就是copy_properties函数的高级版本:包含更多的函数元信息。首先查看wrap装饰器的帮助信息:

import functools
help(functools.wraps)

wrap装饰器函数的原型是:

wraps(wrapped, assigned=('module', 'name', 'qualname', 'doc', 'annotations'), updated=('dict',))

所以这个装饰器会复制module等元信息,但是也不是所有的元信息,并且会更新dict。

使用示例如下:

import time
import functools

def timeit(fn):
    @functools.wraps(fn)	# wraps装饰器的使用
    def wrap(*args, **kwargs):
        start = time.time()
        ret = fn(*args, **kwargs)
        end = time.time()
        print(end - start)
        return ret
    return wrap

def sleep(x):
    time.sleep(x)

print(sleep.__name__)
print(sleep.__doc__)

编写一个带参数的装饰器

如果上述的timeit装饰器,我们需要输出执行时间超过若干秒(比如一秒)的函数的名称和执行时间,那么就需要给装饰器传入一个参数s,表示传入的时间间隔,默认为1s。

我们可以给写好的装饰器外面包一个函数timeitS,时间间隔s作为这个函数的参数传入,并且对内层的函数可见,然后这个函数返回写好的装饰器。

import time
import functools


def timeitS(s):
    def timeit(fn):
        @functools.wraps(fn)
        def wrap(*args, **kwargs):
            start = time.time()
            ret = fn(*args, **kwargs)
            end = time.time()
            if end - start > s:
                print('call {} takes {}s'.format(fn.__name__, end - start))
            else:
                print('call {} takes {}s less than {}'.format(fn.__name__, end - start, s))
            return ret
        return wrap
    return timeit

@timeitS(2)
def sleep(x):
    time.sleep(x)

sleep(3)
sleep(1)

输出结果如下:

call sleep takes 3.001342535018921s
call sleep takes 1.000471830368042s less than 2

所以,我们可以将带参数的装饰器理解为:

  • 带参数的装饰器就是一个函数, 这个函数返回一个不带参数的装饰器

记得帮我点赞哦!

念念不忘,必有回响,小伙伴们帮我点个赞吧,非常感谢。

> 我是职场亮哥,YY高级软件工程师、四年工作经验,拒绝咸鱼争当龙头的斜杠程序员。
>
> 听我说,进步多,程序人生一把梭
>
> 如果有幸能帮到你,请帮我点个【赞】,给个关注,如果能顺带评论给个鼓励,将不胜感激。

本人所有文章、回答都与版权保护平台有合作,著作权归职场亮哥所有,未经授权,转载必究!

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP