权重和偏执的更新公式:
import numpy as np
import matplotlib.pyplot as plt
def readData(path):
data = np.loadtxt(path,dtype = float,delimiter = ",")
return data
def costFunction(theta_0,theta_1,x,y,m):
predictValue = theta_1 * x + theta_0
return sum((predictValue - y) ** 2)/(2 * m)
def gradientDescent(data,theta_0,theta_1,iterations,alpha):
eachIterationValue = np.zeros((iterations,1))
#iterations 行,1列
x = data[:,0] #第0列
y = data[:,1] #第1列
m = data.shape[0] #data.shape[0]表示行数
for i in range(0,iterations):
hypothesis = theta_1 * x + theta_0
temp_0 = theta_0 - alpha * ((1/m) * sum(hypothesis - y))
#更新偏执 theta_0
temp_1 = theta_1 - alpha * (1/m) * sum ((hypothesis - y) * x)
#更新权重 theta_1
theta_0 = temp_0
theta_1 = temp_1
costFunction_temp = costFunction(theta_0,theta_1,x,y,m)
eachIterationValue[i,0] = costFunction_temp
#依次列出损失函数的值
return theta_0,theta_1,eachIterationValue
if __name__ == '__main__':
data = readData('ex1data1.txt')
iterations = 1500
plt.scatter(data[:,0],data[:,1],color = 'g',s = 20)
theta_0,theta_1,eachIterationValue = gradientDescent(data,0,0,iterations,0.01)
hypothesis = theta_1 * data[:,0] + theta_0
plt.plot(data[:,0],hypothesis)
plt.title('Fittingcurve')
plt.show()
plt.plot(np.arange(iterations),eachIterationValue)
plt.title('CostFunction')
plt.show()
运算结果:
参考: https://www.imooc.com/article/252827
数据集链接:链接:https://pan.baidu.com/s/1u8ln5I-Ejfg6O7Xv06paAA
提取码:rr76