继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Prim 最小生成树算法

慕森卡
关注TA
已关注
手记 379
粉丝 120
获赞 527

Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法。和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm)。

Prim 算法的思想很简单,一棵生成树必须连接所有的顶点,而要保持最小权重则每次选择邻接的边时要选择较小权重的边。Prim 算法看起来非常类似于单源最短路径 Dijkstra 算法,从源点出发,寻找当前的最短路径,每次比较当前可达邻接顶点中最小的一个边加入到生成树中。

例如,下面这张连通的无向图 G,包含 9 个顶点和 14 条边,所以期待的最小生成树应包含 (9 - 1) = 8 条边。

https://img1.mukewang.com/5aec0b44000167e104250172.jpg

创建 mstSet 包含到所有顶点的距离,初始为 INF,源点 0 的距离为 0,{0, INF, INF, INF, INF, INF, INF, INF, INF}。

选择当前最短距离的顶点,即还是顶点 0,将 0 加入 MST,此时邻接顶点为 1 和 7。

https://img.mukewang.com/5aec0b4c0001ca0c02280148.jpg

选择当前最小距离的顶点 1,将 1 加入 MST,此时邻接顶点为 

https://img2.mukewang.com/5aec0b540001e59202260160.jpg

选择 2 和 7 中最小距离的顶点为 7,将 7 加入 MST,此时邻接顶点为 6 和 8。

https://img4.mukewang.com/5aec0b63000173c002550156.jpg

选择 2, 6, 8 中最小距离的顶点为 6,将 6 加入 MST,此时邻接顶点为 5。

https://img1.mukewang.com/5aec0b6a00012fb302720151.jpg

重复上面步骤直到遍历完所有顶点为止,会得到如下 MST。

https://img4.mukewang.com/5aec0b7100012f1f02900152.jpg

C# 实现 Prim 算法如下。Prim 算法可以达到 O(ElogV) 的运行时间,如果采用斐波那契堆实现,运行时间可以减少到 O(E + VlogV),如果 V 远小于 E 的话,将是对算法较大的改进。

复制代码

  1 using System;
  2 using System.Collections.Generic;
  3 using System.Linq;
  4 
  5 namespace GraphAlgorithmTesting
  6 {
  7   class Program
  8   {
  9     static void Main(string[] args)
 10     {
 11       Graph g = new Graph(9);
 12       g.AddEdge(0, 1, 4);
 13       g.AddEdge(0, 7, 8);
 14       g.AddEdge(1, 2, 8);
 15       g.AddEdge(1, 7, 11);
 16       g.AddEdge(2, 3, 7);
 17       g.AddEdge(2, 5, 4);
 18       g.AddEdge(3, 4, 9);
 19       g.AddEdge(3, 5, 14);
 20       g.AddEdge(5, 4, 10);
 21       g.AddEdge(6, 5, 2);
 22       g.AddEdge(7, 6, 1);
 23       g.AddEdge(7, 8, 7);
 24       g.AddEdge(8, 2, 2);
 25       g.AddEdge(8, 6, 6);
 26 
 27       // sorry, this is an undirect graph,
 28       // so, you know that this is not a good idea.
 29       List<Edge> edges = g.Edges
 30         .Select(e => new Edge(e.End, e.Begin, e.Weight))
 31         .ToList();
 32       foreach (var edge in edges)
 33       {
 34         g.AddEdge(edge.Begin, edge.End, edge.Weight);
 35       }
 36 
 37       Console.WriteLine();
 38       Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
 39       Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
 40       Console.WriteLine();
 41 
 42       List<Edge> mst = g.Prim();
 43       Console.WriteLine("MST Edges:");
 44       foreach (var edge in mst.OrderBy(e => e.Weight))
 45       {
 46         Console.WriteLine("\t{0}", edge);
 47       }
 48 
 49       Console.ReadKey();
 50     }
 51 
 52     class Edge
 53     {
 54       public Edge(int begin, int end, int weight)
 55       {
 56         this.Begin = begin;
 57         this.End = end;
 58         this.Weight = weight;
 59       }
 60 
 61       public int Begin { get; private set; }
 62       public int End { get; private set; }
 63       public int Weight { get; private set; }
 64 
 65       public override string ToString()
 66       {
 67         return string.Format(
 68           "Begin[{0}], End[{1}], Weight[{2}]",
 69           Begin, End, Weight);
 70       }
 71     }
 72 
 73     class Graph
 74     {
 75       private Dictionary<int, List<Edge>> _adjacentEdges
 76         = new Dictionary<int, List<Edge>>();
 77 
 78       public Graph(int vertexCount)
 79       {
 80         this.VertexCount = vertexCount;
 81       }
 82 
 83       public int VertexCount { get; private set; }
 84 
 85       public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } }
 86 
 87       public IEnumerable<Edge> Edges
 88       {
 89         get { return _adjacentEdges.Values.SelectMany(e => e); }
 90       }
 91 
 92       public int EdgeCount { get { return this.Edges.Count(); } }
 93 
 94       public void AddEdge(int begin, int end, int weight)
 95       {
 96         if (!_adjacentEdges.ContainsKey(begin))
 97         {
 98           var edges = new List<Edge>();
 99           _adjacentEdges.Add(begin, edges);
100         }
101 
102         _adjacentEdges[begin].Add(new Edge(begin, end, weight));
103       }
104 
105       public List<Edge> Prim()
106       {
107         // Array to store constructed MST
108         int[] parent = new int[VertexCount];
109 
110         // Key values used to pick minimum weight edge in cut
111         int[] keySet = new int[VertexCount];
112 
113         // To represent set of vertices not yet included in MST
114         bool[] mstSet = new bool[VertexCount];
115 
116         // Initialize all keys as INFINITE
117         for (int i = 0; i < VertexCount; i++)
118         {
119           keySet[i] = int.MaxValue;
120           mstSet[i] = false;
121         }
122 
123         // Always include first 1st vertex in MST.
124         // Make key 0 so that this vertex is picked as first vertex
125         keySet[0] = 0;
126         parent[0] = -1; // First node is always root of MST 
127 
128         // The MST will have V vertices
129         for (int i = 0; i < VertexCount - 1; i++)
130         {
131           // Pick thd minimum key vertex from the set of vertices
132           // not yet included in MST
133           int u = CalculateMinDistance(keySet, mstSet);
134 
135           // Add the picked vertex to the MST Set
136           mstSet[u] = true;
137 
138           // Update key value and parent index of the adjacent vertices of
139           // the picked vertex. Consider only those vertices which are not yet
140           // included in MST
141           for (int v = 0; v < VertexCount; v++)
142           {
143             // graph[u, v] is non zero only for adjacent vertices of m
144             // mstSet[v] is false for vertices not yet included in MST
145             // Update the key only if graph[u, v] is smaller than key[v]
146             if (!mstSet[v]
147               && _adjacentEdges.ContainsKey(u)
148               && _adjacentEdges[u].Exists(e => e.End == v))
149             {
150               int d = _adjacentEdges[u].Single(e => e.End == v).Weight;
151               if (d < keySet[v])
152               {
153                 keySet[v] = d;
154                 parent[v] = u;
155               }
156             }
157           }
158         }
159 
160         // get all MST edges
161         List<Edge> mst = new List<Edge>();
162         for (int i = 1; i < VertexCount; i++)
163           mst.Add(_adjacentEdges[parent[i]].Single(e => e.End == i));
164 
165         return mst;
166       }
167 
168       private int CalculateMinDistance(int[] keySet, bool[] mstSet)
169       {
170         int minDistance = int.MaxValue;
171         int minDistanceIndex = -1;
172 
173         for (int v = 0; v < VertexCount; v++)
174         {
175           if (!mstSet[v] && keySet[v] <= minDistance)
176           {
177             minDistance = keySet[v];
178             minDistanceIndex = v;
179           }
180         }
181 
182         return minDistanceIndex;
183       }
184     }
185   }
186 }

输出结果如下:

参考资料

  • Connectivity in a directed graph

  • Strongly Connected Components

  • Tarjan's Algorithm to find Strongly Connected Components

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP