继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

基于Yarn集群Spark Streaming 提交任务解惑

慕标5832272
关注TA
已关注
手记 1229
粉丝 229
获赞 1001

参考项目: https://github.com/LiShuMing/spark-demos

疑惑一、Spark提交任务依赖包问题?

使用Spark打jar包是个比较头疼的问题:

  • 不能包冗余的依赖(比如hadoop/hbase)放到jar包里,有可能导致运行环境污染;

  • 不能太少:如果缺少必要的jar包,则会抛NoClassFoundException;

所以,在使用场景中,如何编译出符合要求的最少依赖的提交jar呢?

其实这里面有一个需要注意的地方(同时也是一个很诡异的地方),你在打包的时候需要清楚:哪些包你是不需要的,哪些包你是必须的。
这个对用户小白来说是一件需要重复试验的工作,体验不好;

解决思路:

  • 将所依赖的jar打进一个jar中;

  • 将所依赖的jar领出来,基于spark-submit --jars参数上传必须依赖的jar,供executor端使用;

方案一、 基于assembly编译完整jar

注意: 此种方案会将所有依赖jar编译至一个jar包中,比较危险,不推荐;
TODO: 是否还有其他更优化的方案;

             <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>assemble</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

方案二、基于assembly集成spark所依赖的jar

在maven中添加assembly和dependency插件,并将dependency插件设置<excludeScope>provided</excludeScope>,这样可以将scope为provided级别的依赖不包含在最终的lib中:

            <plugin>
                <artifactId>maven-dependency-plugin</artifactId>
                <executions>
                    <execution>
                        <phase>process-sources</phase>

                        <goals>
                            <goal>copy-dependencies</goal>
                        </goals>

                        <configuration>
                            <excludeScope>provided</excludeScope>
                            <outputDirectory>${project.build.directory}/lib</outputDirectory>
                        </configuration>

                    </execution>
                </executions>
            </plugin>
            <!-- Assembly Plug-in -->
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <finalName>spark-demos-${project.version}</finalName>
                    <descriptors>
                        <descriptor>src/assembly/assembly.xml</descriptor>
                    </descriptors>
                    <tarLongFileMode>gnu</tarLongFileMode>
                </configuration>

                <executions>
                    <execution>
                        <id>assemble</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
    <id>distribution</id>
    <formats>
        <format>dir</format>
        <format>tar.gz</format>
    </formats>

    <fileSets>
        <fileSet>
            <directory>${project.basedir}/src/main/resources</directory>
            <outputDirectory>/conf</outputDirectory>
        </fileSet>

        <fileSet>
            <directory>${project.build.directory}/lib</directory>
            <outputDirectory>/lib</outputDirectory>
            <includes>
                <include>*.*</include>
            </includes>
        </fileSet>

        <fileSet>
            <directory>${project.build.directory}/target/spark-demo-0.1.0.jar</directory>
            <outputDirectory>/</outputDirectory>
            <includes>
                <include>*.*</include>
            </includes>
        </fileSet>
    </fileSets></assembly>

最终编译生成的路径如下,这个你会发现还是有很多冗余的jar(需要开发者在pom.xml中仔细排查,设置每个依赖,注意其引入的jar,如果有冲突设置exclude将其排除),可以手动地调整删除不必要的jar:

├── conf│   ├── conf.properties│   └── kafka_jaas.conf└── lib
    ├── commons-cli-1.2.jar
    ├── commons-codec-1.9.jar
    ├── commons-collections-3.2.2.jar
    ├── commons-httpclient-3.1.jar
    ├── commons-io-2.4.jar
    ├── commons-lang-2.6.jar
    ├── commons-lang3-3.3.2.jar
    ├── commons-logging-1.2.jar
    ├── commons-math-2.2.jar
    ├── disruptor-3.3.0.jar
    ├── findbugs-annotations-1.3.9-1.jar
    ├── guava-12.0.1.jar
    ├── hamcrest-core-1.3.jar
    ├── hbase-annotations-1.2.6.jar
    ├── hbase-client-1.2.6.jar
    ├── hbase-common-1.2.6-tests.jar
    ├── hbase-common-1.2.6.jar
    ├── hbase-hadoop-compat-1.2.6.jar
    ├── hbase-hadoop2-compat-1.2.6.jar
    ├── hbase-prefix-tree-1.2.6.jar
    ├── hbase-procedure-1.2.6.jar
    ├── hbase-protocol-1.2.6.jar
    ├── hbase-server-1.2.6.jar
    ├── htrace-core-3.1.0-incubating.jar
    ├── jackson-core-asl-1.9.13.jar
    ├── jackson-jaxrs-1.9.13.jar
    ├── jackson-mapper-asl-1.9.13.jar
    ├── jcodings-1.0.8.jar
    ├── jdk.tools-1.8.jar
    ├── jetty-util-6.1.26.jar
    ├── jline-0.9.94.jar
    ├── joni-2.1.2.jar
    ├── junit-4.12.jar
    ├── kafka-clients-0.10.0.1.jar
    ├── log4j-1.2.17.jar
    ├── lz4-1.3.0.jar
    ├── metrics-core-2.2.0.jar
    ├── netty-3.8.0.Final.jar
    ├── netty-all-4.0.29.Final.jar
    ├── protobuf-java-2.5.0.jar
    ├── slf4j-api-1.7.7.jar
    ├── slf4j-log4j12-1.7.7.jar
    ├── snappy-java-1.1.2.6.jar
    ├── spark-streaming-kafka-0-10_2.11-2.0.2.jar
    ├── unused-1.0.0.jar
    └── zookeeper-3.4.6.jar

上述打包问题已经差不多了,后续会逐渐补充,具体使用后面会阐述;

疑惑二、Spark任务提交Yarn队列之正确方式?

这个问题是许多Spark用户都比较纠结的问题,原因在于Spark繁杂的配置项,如果对其理解不透,则在使用的时候,只能一遍遍地试用了。

现对spark-sumbit中几个比较重要的配置,做一个说明:

  • --files : 必须用','相隔,文件会上传至executor的工作路径,默认并没有加载至classpath中,一般使用在配置文件相关;

  • --jars  : 必须用','相隔,文件会上传至executor/driver(cluster模式下)的工作路径,默认会加载至classpath中,一般使用在所依赖的jar相关;

  • --class : 加载主类名;

  • --master yarn : yarn集群的方式提交

  • --queue : 提交yarn队列的名称;

  • --driver-memory : driver申请内存;

  • --executor-memory : executor申请内存;

  • --executor-cores : 每个executor中使用的cores数量,建议2~5个;

  • --conf  :spark-submit启动spark任务时配置项内容,其中又包含如下几个比较重要的(示例):

    • --conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_client_jaas.conf" : executor启动是的jvm配置项,一般kerberos系统配置会使用到;

    • --conf spark.yarn.keytab=/etc/security/keytabs/hbase.service.keytab : spark-submit 依赖的keytab配置;

    • --conf spark.yarn.principal=hbase/hzadg-mammut-platform1.server.163.org@BDMS.163.COM : spark-submit 启动依赖的principle配置;

    • --conf spark.driver.extraClassPath=./spark-demos-0.1.0/lib/* : driver启动时添加jvm的classpath,加载必要的jar;

  • --driver-java-options : driver 启动是的jvm配置项,一般kerberos系统配置会使用到;

所以基于上述的配置项,如果运行KafkaToHBase项目,首先

  • 将项目依赖的配置文件加载通过--files保障executor配置项是同步的;

  • 将kerberos认证相关内容、相关配置复制到项目路径下(./kafka_client_jaas.conf,./kafka.service.keytab,./hbase-site.xml );

  • 将项目依赖的(Spark/Yarn环境没有提供的jar)通过--jars上传至executor工作路径中;

其中注意,由于--files/--jars针对多个文件都是用','分割的,所以可以使用下面这个命令生成凭借字符串(注意变更必要参数):

r='';for i in ls ./lib/;do  r=${r},"./lib/$i";done ; echo $r

针对https://github.com/LiShuMing/spark-demos项目,启动如下:

  • 编译完毕后,将target/spark-demos-0.1.0-distribution.tar.gz编译文件mv到工作环境,解压;

  • 将依赖的kafka_client_jaas.conf kafka.service.keytab复制到项目路径下;

  • 基于r='';for i in ls  ./lib/;do r=${r},"./lib/$i";done ; echo $r生成--jars必要拼接串;

最终运行命令如下(具体使用需要调整):

/usr/ndp/current/spark2_client/bin/spark-submit \
--files ./kafka_client_jaas.conf,./kafka.service.keytab,./hbase-site.xml \
--conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_client_jaas.conf" \
--driver-java-options "-Djava.security.auth.login.config=./kafka_client_jaas.conf" \
--conf spark.yarn.keytab=/etc/security/keytabs/hbase.service.keytab \
--conf spark.yarn.principal=hbase/hzadg-mammut-platform1.server.163.org@BDMS.163.COM \
--conf spark.driver.extraClassPath=./spark-demos-0.1.0/lib/* \
--jars ./lib/commons-cli-1.2.jar,./lib/commons-codec-1.9.jar,./lib/commons-collections-3.2.2.jar,./lib/commons-httpclient-3.1.jar,./lib/commons-io-2.4.jar,./lib/commons-lang-2.6.jar,./lib/commons-lang3-3.3.2.jar,./lib/commons-logging-1.2.jar,./lib/commons-math-2.2.jar,./lib/disruptor-3.3.0.jar,./lib/findbugs-annotations-1.3.9-1.jar,./lib/guava-12.0.1.jar,./lib/hamcrest-core-1.3.jar,./lib/hbase-annotations-1.2.6.jar,./lib/hbase-client-1.2.6.jar,./lib/hbase-common-1.2.6.jar,./lib/hbase-common-1.2.6-tests.jar,./lib/hbase-hadoop2-compat-1.2.6.jar,./lib/hbase-hadoop-compat-1.2.6.jar,./lib/hbase-prefix-tree-1.2.6.jar,./lib/hbase-procedure-1.2.6.jar,./lib/hbase-protocol-1.2.6.jar,./lib/hbase-server-1.2.6.jar,./lib/htrace-core-3.1.0-incubating.jar,./lib/jackson-core-asl-1.9.13.jar,./lib/jackson-jaxrs-1.9.13.jar,./lib/jackson-mapper-asl-1.9.13.jar,./lib/jcodings-1.0.8.jar,./lib/jdk.tools-1.8.jar,./lib/jetty-util-6.1.26.jar,./lib/jline-0.9.94.jar,./lib/joni-2.1.2.jar,./lib/junit-4.12.jar,./lib/kafka-clients-0.10.0.1.jar,./lib/log4j-1.2.17.jar,./lib/lz4-1.3.0.jar,./lib/metrics-core-2.2.0.jar,./lib/netty-3.8.0.Final.jar,./lib/netty-all-4.0.29.Final.jar,./lib/protobuf-java-2.5.0.jar,./lib/slf4j-api-1.7.7.jar,./lib/slf4j-log4j12-1.7.7.jar,./lib/snappy-java-1.1.2.6.jar,./lib/spark-demo-0.1.0.jar,./lib/spark-streaming-kafka-0-10_2.11-2.0.2.jar,./lib/unused-1.0.0.jar,./lib/zookeeper-3.4.6.jar \
--master yarn  \
--class com.netease.spark.streaming.hbase.JavaKafkaToHBaseKerberos \--executor-memory 1g \
--driver-memory 2g \
--executor-cores 1 \
--queue default \
--deploy-mode client ./lib/spark-demo-0.1.0.jar



作者:分裂四人组
链接:https://www.jianshu.com/p/333aff9eb725


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP