继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

源码分析系列1:HashMap源码分析(基于JDK1.8)

HUWWW
关注TA
已关注
手记 266
粉丝 37
获赞 132

1.HashMap的底层实现图示

  

  如上图所示:

  HashMap底层是由  数组+(链表)=(红黑树) 组成,每个存储在HashMap中的键值对都存放在一个Node节点之中,其中包含了Key-Value之外,还包括hash值(key.hashCode()) ^ (h >>> 16)) 以及执行下一个节点的指针next。

 

2.HashMap源码分析

2.1 重要常量

复制代码

public class HashMap<K,V> extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable {    private static final long serialVersionUID = 362498820763181265L;    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;  
         static final int MAXIMUM_CAPACITY = 1 << 30;         static final float DEFAULT_LOAD_FACTOR = 0.75f;       static final int TREEIFY_THRESHOLD = 8;    static final int UNTREEIFY_THRESHOLD = 6;    static final int MIN_TREEIFY_CAPACITY = 64;
    transient Node<K,V>[] table;   
        transient Set<Map.Entry<K,V>> entrySet; 
     transient int size;
     transient int modCount;
       int threshold;
    final float loadFactor;

复制代码

  • DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16

  • MAXIMUM_CAPACITY : HashMap的最大支持容量,2^30

  • DEFAULT_LOAD_FACTOR:HashMap的默认加载因子

  • TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树

  • UNTREEIFY_THRESHOLD:Bucket中红黑树存储的Node小于该默认值,转化为链表

  • MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量。(当桶中Node的数量大到需要变红黑树时,若hash表容量小于MIN_TREEIFY_CAPACITY时,此时应执行resize扩容操作这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。)

  • table:存储元素的数组,总是2的n次幂

  • entrySet:存储具体元素的集

  • size:HashMap中存储的键值对的数量

  • modCount:HashMap扩容和结构改变的次数。

  • threshold:扩容的临界值,=容量*填充因子

  • loadFactor:填充因子

2.2 重要方法

1.获取hash值  hash

    static final int hash(Object key) {        int h;        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

  hash方法用传入的key的hashCode和hashCode无符号右移16位的结果,做异或运算后作为hash值返回。

注:之所以获取hashCode后,还需要和右移16位的hashCode做异或运算,原因是:在根据hash值获取键值对在bucket数组中的下标时,采用的算法是:index=h & (length-1),当数组的length较小时,只有低位能够参与到“与”运算中,但是将hashCode右移16位再与本身做异或获取到的hash,可以使高低位均能够参与到后面的与运算中。

下面图说明:

2.根据键值对数量获取HashMap容量方法   tableSizeFor

复制代码

    static final int tableSizeFor(int cap) {        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

复制代码

tabSizeFor方法,主要根据传入的键值对容量,来返回大于容量的最小的二次幂数值。

算法如下: 

 将传入的容量-1:至于这里为什么需要减1,是为了防止cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍,各位可自行验证:

 

spacer.gif

spacer.gif

spacer.gif

 假设原始n:    0001  xxxx xxxx xxxx

第一次右移1位+或运算:二进制序列出现至少两个连续的1,如 0001 1xxx xxxx xxxx;
第二次右移2位+或运算:二进制序列出现至少四个连续的1,如 0001 111x xxxx xxxx;

第三次右移4位+或运算:二进制序列出现至少八个连续的1, 如 0001 1111 1111 xxxx;

第四次右移8位+或运算:二进制序列至少出现16个连续的1,如 0001 1111 1111 1111;
第五次右移16位+或运算:二进制序列至少出现32个连续的1,如 0001 1111 1111 1111;
  上述运算中,若出现右移后为0,则或运算得到的结果和原始值一致,则后续推导过程可以忽略。
此时可以保证,原始序列从包含1的最高位,到最低位,全部都变成了1.
最后+1,返回的结果就是大于原值的最小二次幂数。
  

3.插入方法   putVal

  

复制代码

 1  final V putVal(int hash, K key, V value, boolean onlyIfAbsent, 2                    boolean evict) { 3                     4         Node<K,V>[] tab;    //存储Node节点的数组tab 5         Node<K,V> p;         //单个Node节点p 6         int n, i;            //HashMap的容量n 7         //初始化数组桶table 8         if ((tab = table) == null || (n = tab.length) == 0) 9             n = (tab = resize()).length;10         //如果数组桶中不包含要插入的元素,将新键值对作为新Node存入数组,11         if ((p = tab[i = (n - 1) & hash]) == null)    //此处p初始化,p和需要存储的键值对下标相同且P是链表的第一个元素12             tab[i] = newNode(hash, key, value, null);13             14         //桶中包含要插入的元素15         else {16             Node<K,V> e; K k;17             //如果key和链表第一个元素p的key相等18             if (p.hash == hash &&19                 ((k = p.key) == key || (key != null && key.equals(k))))20             //则将e指向该键值对21                 e = p;22             //若p是TreeNode类型,则使用红黑树的方法插入到树中23             else if (p instanceof TreeNode)24                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);25             //else:键值对的引用不在链表的第一个节点,此时需要遍历链表    26             else {27                 for (int binCount = 0; ; ++binCount) {28                     //将e指向p的下一个元素,直到其next为null时,将键值对作为新Node放到p的尾部或树中。29                     if ((e = p.next) == null) {30                         p.next = newNode(hash, key, value, null);31                         //如果遍历链表的长度大于等于8,则变成树32                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st33                             treeifyBin(tab, hash);34                         break;   //新元素已追加到链表尾部或树中,退出遍历35                     }36                     //在冲突链表中找到另一个具有相同key值的节点,退出遍历37                     if (e.hash == hash &&38                         ((k = e.key) == key || (key != null && key.equals(k))))39                         break;40                         41                     //将e指向p,便于下次遍历e = p.next42                     p = e;43                 }44                 //上述for循环执行完毕后,e要么指向了存储的新节点,要么是原来已有的元素,具有和新节点一样key值45             }46             //当e非空时,说明e是原来HashMap中的元素,具有和新节点一样的key值47             if (e != null) { // existing mapping for key48                 V oldValue = e.value;49                 if (!onlyIfAbsent || oldValue == null)    //onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值50                     e.value = value;51                 //空实现,LinkedHashMap用52                 afterNodeAccess(e);53                 return oldValue;54             }55         }56         //HashMap结构更改,modCount+157         ++modCount;58         //判断是否需要扩容59         if (++size > threshold)60             resize();61         //空实现,LinkedHashMap用62         afterNodeInsertion(evict);63         return null;64     }

复制代码

  HashMap中进行存储的入口方法是:put(K,V),但是核心方法是putVal方法,该方法一共有以下步骤:

  1. 初始化数组桶

  2. 判断数组桶中对应下标是否无元素存在,是,就直接存入

  3. 若数组桶中对应下标有元素存在,则开始遍历,根据长度将元素存入链表尾部或树中。

  4. 判断是否需要扩容

  

4.扩容方法   resize

复制代码

  1 final Node<K,V>[] resize() {  2         Node<K,V>[] oldTab = table;  3         int oldCap = (oldTab == null) ? 0 : oldTab.length;    //原HashMap的容量  4         int oldThr = threshold;                                //原HashMap的扩容临界值                  5         int newCap, newThr = 0;  6         //case1:odlCap>0,说明桶数组已经初始化过  7         if (oldCap > 0) {  8             //原HashMap的越界检查  9             if (oldCap >= MAXIMUM_CAPACITY) { 10                 threshold = Integer.MAX_VALUE; 11                 return oldTab; 12             } 13             //容量扩大一倍后的越界检查 14             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 15                      oldCap >= DEFAULT_INITIAL_CAPACITY) 16                 newThr = oldThr << 1; // double threshold 17         } 18         //case2:oldCap=0 && oldThr >0,桶数组尚未初始化,当调用带初始化容量的构造函数时会发生该情况 19         else if (oldThr > 0) // initial capacity was placed in threshold 20             //在前面HashMap的初始化中,将Initial capcity暂存在threshold中 21             newCap = oldThr; //未初始化,则用Initial capcity作为新的容量 22              23             //若oldThr = threshold = 0,则说明未传入初始化容量参数 24              25         //case3:oldCap=0 && oldThr = 0,当调用无参构造函数时会发生该情况,此时使用默认容量初始化 26         else {               // zero initial threshold signifies using defaults 27             newCap = DEFAULT_INITIAL_CAPACITY;    //默认容量 28             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);    //默认扩容临界值 29         } 30          31         // 当newThr 为 0 时,阈值按照计算公式进行计算 32         if (newThr == 0) { 33             float ft = (float)newCap * loadFactor; 34             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 35                       (int)ft : Integer.MAX_VALUE); 36         } 37          38         threshold = newThr; 39         /* 40         * 在上面的操作中,主要是获取了Resize之后的新的Capcity和新的扩容临界值threshold 41         */ 42          43         @SuppressWarnings({"rawtypes","unchecked"}) 44             //上面获取到的新的Capcity,来创建一个新的桶数组 newTab,并指向table 45             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 46         table = newTab; 47         //若oldTab非空,则需要将原来桶数组的元素取出来放到新的桶数组中 48         if (oldTab != null) { 49             for (int j = 0; j < oldCap; ++j) { 50                 Node<K,V> e; 51                 if ((e = oldTab[j]) != null) { 52                     oldTab[j] = null;    //将原桶数组的元素占用的空间释放,便于GC 53                     if (e.next == null)    
 54                         //若桶中元素的next为空,获取index后直接将其放入新桶数组中 55                         newTab[e.hash & (newCap - 1)] = e; 56                         //若桶中元素的next是树节点 57                     else if (e instanceof TreeNode) 58                         //采用树的方式插入 59                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 60                         //若桶中元素的next是链表节点 61                     else { // preserve order 62                         Node<K,V> loHead = null, loTail = null; 63                         Node<K,V> hiHead = null, hiTail = null; 64                         Node<K,V> next; 65                          66                         /*遍历原链表,按照原来的顺序进行分组 67                         */ 68                          69                          70                         /*原始链表中的元素,在resize之后,其下标有两种可能,一种是在原来下标处,另一种是原来下标+oldCap处 71                         *举例说明:  若原来的容量 -1后 只有n位,低位有n个1,去下标公式为:i = (oldCap - 1) & hash,若hash值只有低n为有值,则与运算后获得的值和 72                         *扩容前是一样的,若hash不止第n位有值,那采用与运算后,结果比原来刚好大oldCap。 下面有图片示例) 73                         */ 74

 75                          76                         do { 77                             next = e.next 78                             //若e.e.hash & oldCap 结果为0,则下标在新桶数组中不用改变,此时,将元素存放在loHead为首的链表中 79                             if ((e.hash & oldCap) == 0) { 80                                 if (loTail == null) 81                                     loHead = e; 82                                 else 83                                     loTail.next = e; 84                                 loTail = e; 85                             } 86                              87                             //若e.e.hash & oldCap 结果不为0,则下标在新桶数组等于原下标+oldCap,此时,将元素存放在hiHead为首的链表中 88                             else { 89                                 if (hiTail == null) 90                                     hiHead = e; 91                                 else 92                                     hiTail.next = e; 93                                 hiTail = e; 94                             } 95                         } while ((e = next) != null); 96                          97                          98                          99                         if (loTail != null) {        //loHead为首的链表中,下标不改变100                             loTail.next = null;101                             newTab[j] = loHead;102                         }103                         if (hiTail != null) {        //hiHead为首的链表中,下标=原下标+oldCap104                             hiTail.next = null;105                             newTab[j + oldCap] = hiHead;106                         }107                     }108                 }109             }110         }111         return newTab;        
112     }

复制代码

  上述代码分析较长,总结如下:

1.获取不同情况下的 新的容量 和 新的扩容临界值

2.根据新容量创建新的桶数组tab。

3.根据节点类型,树节点和链表节点分别采用对应方法放入新的桶数组

 

5.移除元素  remove

复制代码

 1  final Node<K,V> removeNode(int hash, Object key, Object value, 2                                boolean matchValue, boolean movable) { 3         Node<K,V>[] tab; Node<K,V> p; int n, index; 4          5         //通过hash值获取下标,下标对应的节点p不为空 6         if ((tab = table) != null && (n = tab.length) > 0 && 7             (p = tab[index = (n - 1) & hash]) != null) { 8             Node<K,V> node = null, e; K k; V v; 9             //若节点p的key和待移除的节点key相等10             if (p.hash == hash &&11                 ((k = p.key) == key || (key != null && key.equals(k))))12                 //则p就是待移除节点13                 node = p;    //将p指向待移除节点14             //p的key和待移除的节点key不相等,遍历p作为头的链表或者树15             else if ((e = p.next) != null) {16                 //若p是树节点17                 if (p instanceof TreeNode)18                     //采用树节点方式获得要移除的节点19                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);20                 else {//p是链表的头节点21                     do {22                         //采用循环,当p.next不为空,比对它和传入的key,直到找到相等的key23                         if (e.hash == hash &&24                             ((k = e.key) == key ||25                              (key != null && key.equals(k)))) {26                             //找到后,将节点指向node27                             node = e;    //将e指向待移除节点,此时相当于p.next就是待移除的节点node,可自行验证循环便知28                             break;29                         }30                         p = e;  
31                     } while ((e = e.next) != null);32                 }33             }34             //若node非空,传入的matchValue参数为flase或 node的value等于传入value35            if (node != null && (!matchValue || (v = node.value) == value ||36                                  (value != null && value.equals(v)))) {37                 //若node是树节点38                 if (node instanceof TreeNode)39                     //采用树节点的方式移除40                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);41                     //若待移除节点是链表头,将其指向待移除元素的next,移除对node的引用42                 else if (node == p)43                     tab[index] = node.next;  
44                 else//待移除元素是链表中的元素,此时其等于p.next45                     //将p.next指向node.next,移除了对node的引用46                     p.next = node.next;47                 //增加结构修改计数器48                 ++modCount;49                 //size-150                 --size;51                 //空实现,LinkedHashMap用52                 afterNodeRemoval(node);53                 54                 //返回移除的节点node55                 return node;56             }57         }58         return null;59     }

复制代码

 

    移除节点的入口方法是: public V remove(Object key)  ,其核心方法是removeNode,主要做了以下几个工作:

  1. 通过用key获取的hash,来获取下标。

  2. 若下标对应处无元素,返回null。

  3. 若下标对应处有元素,判断是树或者链表,采用对应方法移除。  

6.查找元素方法 get

复制代码

 1     final Node<K,V> getNode(int hash, Object key) { 2         Node<K,V>[] tab; Node<K,V> first, e; int n; K k; 3         //根据hash值,获取对应下标的第一个元素first 4         if ((tab = table) != null && (n = tab.length) > 0 && 5             (first = tab[(n - 1) & hash]) != null) { 6             //如果first的key和待查询的key相等,返回first 7             if (first.hash == hash && // always check first node 8                 ((k = first.key) == key || (key != null && key.equals(k)))) 9                 return first;10             //若first不是待查询的元素11             if ((e = first.next) != null) {12                 //若first是树节点,采用树节点的方式获取13                 if (first instanceof TreeNode)14                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);15                 //first是链表节点头,使用循环获取16                 do {17                     if (e.hash == hash &&18                         ((k = e.key) == key || (key != null && key.equals(k))))19                         return e;20                 } while ((e = e.next) != null);21             }22         }23         return null;24     }

复制代码

    查询元素的入口方法是:public V get(Object key),返回值是node的value,核心方法是getNode(int hash, Object key)。

2.3 构造方法

1.无参构造函数

    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

  使用所有默认参数来构造一个HashMap,我们常用的就是这种。

2.给出容量的构造函数 

    public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

  此处调用了下面这个构造函数,将给出的容量传入和默认负载因子。

3.给出容量和负载因子的构造函数

复制代码

    public HashMap(int initialCapacity, float loadFactor) {
      //容量越界检查        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
      //负载因子非负非空检查        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
            this.loadFactor = loadFactor;  
        this.threshold = tableSizeFor(initialCapacity);  //此处将初始化的容量暂存到threshold中
    }

复制代码

4.用一个map来初始化的构造函数

    public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

  此处将map中所有元素放入HashMap进行初始化。

3.常见问题解答

3.1 HashMap的容量为什么必须是2的n次幂?

    答:当容量是2的n次幂时,不同的key获取在桶数组中的下标相同的概率减小,发生Hash碰撞几率减少,元素分布更加均匀,见下图。

  

结论:

1.由上述实例可以看出,当HashMap容量为2的n次幂的时候,length-1,可以使得在计算index的"&"运算过程中,hash值的对应位都能参与到计算;若HashMap容量不等于2的n次幂,leng-1后必然有一些位是等于0的,那么在计算index的"&"运算过程中,对应位的数字无论是0或者1,都未能参与到运算中。导致Hash冲突概率增大。

2.初次之外,若HashMap容量不为2的n次幂,无论Hash值如何变化,始终有一些下标值无法取得,因为"&"运算过程中,必然有一些位置结果始终为0,如实例所示,其最低位始终为0,因此下标 1(二进制0000 0001)、3(二进制0000 0011)、5(二进制0000 0101)、7(二进制0000 0111)等下标、永远都获取不了。造成了容量的浪费

3.2 HashMap的时间复杂度?

  答:O(1)或者O(log(n))或O(n),分析如下:

  根据第一节的内容可知,根据HashMap的数据结构,可能有以下三种情况:

  1.无链表和红黑树,理想状态。每个桶只有一个或0个元素,不存在Hash冲突,此时时间复杂度为O(1);但此时耗费的内存空间较大。

  2.只有链表,此时因为需要循环链表来获取元素,时间复杂度为O(n)

  3.只有红黑树,此时时间复杂度为红黑树查找的时间复杂度,O(log(n)).

  4.链表和红黑树均有,此时时间复杂度依据红黑树的层数和链表长度而定。为O(n)或者O(log(n)).

3.3 负载因子LoadFactor为何默认值为0.75。

  当负载因子过大时,Hash冲突概率增加、读写的时间复杂度也大大增加,当负载因子过小时,Hash冲突概率较小,时间复杂度较低,但占用内存空间较大。

  至于为什么默认值是0.75,这是一个基于时间和空间复杂度的综合考虑的结果,可以参考这篇文章:HashMap的loadFactor为什么是0.75?

3.4 作为HasHMap的key有什么条件?

  使用HashMap,若用int/String等作为key值,因为Integer类和String类都以及重写了equals()和hashCode()方法.

  但是如果key是自定义的类,就必须重写hashcode()和equals()。理由如下:

  

复制代码

//在插入元素中,根据hash值后,与length-1做&运算获取下标       //获取hash
        static final int hash(Object key) {        int h;        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }       //获取下标
       p = tab[i = (n - 1) & hash]    //用equals方法比对key值和节点的key值,来确认是否遍历到所需元素
     (key != null && key.equals(k)))    
/*对比hash值,如果不重写hashCode方法,那么采用Object类的默认的hash方法是获取内存地址,此时即使两个key对象相等,但其内存地址不可能相等,所以必须重写hashCode方法。*//*equals方法若不重写,采用的Object的equals方法,比对的是内存地址,如果不重写,会造成两个一样的key值都插入,存在重复元素*/        
//同理,在查找过程中,在第二节putVal方法中有分析,会用到hash值,以及用到key.equals方法,因此如果不重写equals()和hashCode(),会造成虽然元素存在,但是因内存地址不一致,差找不到对应元素。

复制代码

3.5 HashMap key允许为空吗?,最多几个?

  答:允许但只允许一个key值为空。当key值为空时,其hash值为0,因此在桶数组中位置是0,即第一个元素。

  那么为什么不能有两个key值为null呢,原因是两个key为null,是一样的,后面put进去的(null,value2)会覆盖先put进去的(null,value1)。验证如下:

  

  

3.6 HashMap value允许为空吗?最多几个?

  答:允许,可以有多个value为null,查看源码可知,在putVal中没有对value进行限制,验证如下:

  

写在最后:

  1.本文中设计到数操作的都没有详细介绍,因为红黑树本身概念较为抽象复杂,打算下一篇文章中再来详细分析一下,还有其他一些类似于“map.clear()、map.ContainsKey()”等等逻辑较为简单的方法也未作赘述。

  2.不得不感叹一些设计Java集合类的大牛是真的牛,看似一个简单的HashMap中、对于位运算、链表。红黑树的应用可谓是炉火纯青,看起来都不能一目了然,设计时那更是天马行空,匠心独运。

原文出处:https://www.cnblogs.com/LearnAndGet/p/9971526.html  

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP