用一个简单的例子来看看 LSTM 在 tensorflow 里是如何做分类问题的。
这个例子特别简单,就是一个长度为 20 的二进制串,数出其中 1 的个数,简单到用一个 for 就能搞定的事情,来看看 LSTM 是如何做到的。
大家可以先在这里停一下,看看你有什么想法呢。
import numpy as npfrom random import shuffle
input 一共有 2^20 种组合,就生成这么多的数据
train_input = ['{0:020b}'.format(i) for i in range(2**20)] shuffle(train_input) train_input = [map(int,i) for i in train_input]
train_input:
[1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1]
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1]
把每一个 input 转化成 tensor 的形式
在 dimensions = [batch_size, sequence_length, input_dimension]
中,sequence_length = 20 and input_dimension = 1,
每个 input 变成了 A list of 20 lists
ti = []for i in train_input: temp_list = [] for j in i: temp_list.append([j]) ti.append( np.array(temp_list) ) train_input = ti
train_input :
[[1][0][0][0][1][1][1][0][1][0][0][0][0][1][0][0][0][1][0][0]]
生成实际的 output 数据
train_output = [] for i in train_input: count = 0 for j in i: if j[0] == 1: count+=1 temp_list = ([0]*21) temp_list[count]=1 train_output.append(temp_list)
train_output:在第几个位置上有一个 1 ,说明 input 里面就有几个 1,长度为 21
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
取 0.9% 为训练数据,另外的为测试数据
NUM_EXAMPLES = 10000test_input = train_input[NUM_EXAMPLES:] test_output = train_output[NUM_EXAMPLES:] #everything beyond 10,000 train_input = train_input[:NUM_EXAMPLES] train_output = train_output[:NUM_EXAMPLES] #till 10,000
定义两个变量
其中 data 的维度 = [Batch Size, Sequence Length, Input Dimension]
data = tf.placeholder(tf.float32, [None, 20,1]) target = tf.placeholder(tf.float32, [None, 21])
定义 hidden dimension = 24
太多会 overfitting,太少效果不好,可以调节看变化。
模型用 LSTM,这里用的 tf 1.0.0 的 version
num_hidden = 24# cell = tf.nn.rnn_cell.LSTMCell(num_hidden,state_is_tuple=True)cell = tf.contrib.rnn.LSTMCell(num_hidden,state_is_tuple=True)
用 val 来存这个 output
val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32)
变换一下维度,并取 val 的最后一个为 last
val = tf.transpose(val, [1, 0, 2]) last = tf.gather(val, int(val.get_shape()[0]) - 1)
定义 weight 和 bias
weight = tf.Variable(tf.truncated_normal( [num_hidden, int(target.get_shape()[1])] )) bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]]))
再作用上 softmax 得到 prediction
prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
用 cross_entropy 来做 cost function,目标是使它最小化,选用 AdamOptimizer
cross_entropy = -tf.reduce_sum(target * tf.log(tf.clip_by_value(prediction,1e-10,1.0))) optimizer = tf.train.AdamOptimizer() minimize = optimizer.minimize(cross_entropy)
定义一下 error 的形式,就是预测和实际有多少个位置不一样
mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
前面定义完模型和变量,这里开始启动 session
init_op = tf.initialize_all_variables() sess = tf.Session() sess.run(init_op)
迭代 600 次就可以达到 0.3% 的 error 了
batch_size = 1000no_of_batches = int(len(train_input)) / batch_size epoch = 600
for i in range(epoch): ptr = 0 for j in range(no_of_batches): inp, out = train_input[ptr:ptr+batch_size], train_output[ptr:ptr+batch_size] ptr += batch_size sess.run(minimize,{data: inp, target: out}) print "Epoch ",str(i) incorrect = sess.run(error,{data: test_input, target: test_output})print sess.run(prediction, {data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]}) print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect)) sess.close()
最后的结果:
[[ 2.80220238e-08 3.24575727e-10 5.68697936e-11 3.57573054e-10 9.62089857e-08 1.30921896e-08 2.14473985e-08 5.21751364e-10 2.29034747e-08 8.47907577e-10 3.60394756e-06 2.30961153e-03 9.82593179e-01 1.50928665e-02 4.23395448e-07 1.06428047e-07 6.70640388e-09 1.78888765e-10 3.22445395e-08 3.09186134e-08 3.70296416e-09]] Epoch 600 error 0.3%