继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

数据压缩算法---霍夫曼编码的分析与实现

烙印99
关注TA
已关注
手记 389
粉丝 92
获赞 446

霍夫曼编码是一种基于最小冗余编码的压缩算法。最小冗余编码是指,如果知道一组数据中符号出现的频率,就可以用一种特殊的方式来表示符号从而减少数据需要的存储空间。一种方法是使用较少的位对出现频率高的符号编码,用较多的位对出现频率低的符号编码。我们要意识到,一个符号不一定必须是文本字符,它可以是任何大小的数据,但往往它只占一个字节。

熵和最小冗余

每个数据集都有一定的信息量,这就是所谓的熵一组数据的熵是数据中每个符号熵的总和。符号z的熵S定义为:

Sz = -lg Pz

其中,Pz就数据集中z出现的频率。来看一个例子,如果z在有32个符号的数据集中出现了8次,也就是1/4的概率,那么z的熵就是:

-lg (1/4) = 2位

这意味着如果用超过两位的数来表示z将是一种浪费。如果在一般情况下用一个字节(即8位)来表示一个符号,那么在这种情况下使用压缩算法可以大幅减小数据的容量。

下表展示如何计算一个有72个数据实例熵的例子(其中有5个不同的符号)。要做到这一点,需将每个字符的熵相加。以U为例,它在数据集中出现了12次,所以每个U的实例的熵计算如下:

符号概率每个实例的熵总的熵
U12/722.584 96331.019 55
V18/722.000 00036.000 00
W7/723.362 57023.537 99
X15/722.263 03433.945 52
Y20/721.847 99736.959 94

-lg(12/72) = 2.584 963 位

由于U在数据中出现了12次,因此整个数据的熵为:

2.584 963 * 12 = 31.019 55 位

为了计算数据集整体的熵,将每个字符所贡献的熵相加。每个字符的熵在表中已经计算出来了:

31.019 55 + 36.000 00 + 23.537 99 + 33.945 52 + 36.959 94 = 161.463 00 位

如果使用8位来表示每个符号,需要72 * 8 = 576位的空间,所以理论上来说,可以最多将此数据压缩:

1 - (161.463 000/576) = 72%

构造霍夫曼树

霍夫曼编码展现了一种基于熵的数据近似的最佳表现形式它首先生成一个称为霍夫曼树的数据结构,霍夫曼树本身是一棵二叉树,用它来生成霍夫曼编码。霍夫曼编码是用来表示数据集合中符号的编码,用这种编码的方式达到数据压缩的目的。然而,霍夫曼编码的压缩结果往往只能接近于数据的熵,因为符号的熵往往是有小数位的,而在实际中,霍夫曼编码所用的位数不可能有小数位,所以有些代码会超过实际最优的代码位数。

 下图展示了用上表中的数据来构建一棵霍夫曼树的过程。构建的过程往往是从叶子结点向上进行。首先,将每个符号和频率放到它自身的树中(步骤1)然后,将两个频率最小的根结点的树合并,并将其频率之和放到树的新结点中(步骤2)这个过程反复持续下去,直到最后只剩下一棵树(这棵树就是霍夫曼树,步骤5)霍夫曼的根结点包含数据中符号的总个数,它的叶子结点包含原始的符号和符号的频率。由于霍夫曼编码就是在不断寻找两棵最适合合并的树,因此它是贪婪算法的一个很好的例子。

https://img.mukewang.com/5b338e5e00015ade04800454.jpg

压缩和解压缩数据

建立一棵霍夫曼树是数据压缩和解压缩的一部分。

用霍夫曼树压缩数据,给定一个具体的符号从树的根开始,然后沿着树的叶向叶子结点追踪。在向下追踪的过程中,当向左分支移动时,向当前编码的末尾追加0;当向右移动时,向当前编码的末尾追加1。在上图中,追踪“U”的霍夫曼编码,首先向右移动(1),然后向左移动(10),然后再向右(101)。图中符号的霍夫曼编码分别为:

U=101,V=01,W=100,X=00,Y=11

要解压缩用霍夫曼树编码的数据,要一位一位地读取压缩数据。从树的根开始,当在数据中遇到0时,向树的左分支移动;当遇到1时,向右分支移动。一旦到达一个叶子结点就找到了符号。接着从头开始,重复以上过程,直到所有的压缩数据都找出。用这种方法来解压缩数据是可能的,这是因为霍夫曼树是属于前缀树。前缀树是指一组代码中,任何一个编码都不是另一个编码的前缀。这就保证了编码被解码时不会有多义性。例如,“V”的编码是01,01不会是任何其他编码的前缀。因此,只要在压缩数据中碰到了01,就可以确定它表示的符号是“V”。

霍夫曼编码的效率

为了确定霍夫曼编码降低了多大容量的存储空间,首先要计算每个符号出现的次数与其编码位数的乘积,然后将其求和。所以,上表中压缩后的数据的大小为:

12*3 + 18*2 + 7*3 + 15*2 +20*2 = 163位

假设不使用压缩算法的72个字符均用8位表示,那么其总共所占的数据大小为576位,所以其压缩比计算如下:

1 - (163/576)=71.7%

再次强调的是,在实际中无法用小数来表示霍夫曼编码,所以在很多情况下这个压缩比并没有数据的熵效果那么好。但也非常接近于最佳压缩比。

在通常情况下,霍夫曼编码并不是最高效的压缩方法,但它压缩和解压缩的速度非常快。一般来说,造成霍夫曼编码比较耗时的原因是它需要扫描两次数据:一次用来计算频率;另一次才是用来压缩数据。而解压缩数据非常高效,因为解码每个符号的序列只需要扫描一次霍夫曼树。

霍夫曼编码的接口定义

huffman_compress


int huffman_compress(const unsigned char *original, unsigned char **compressed, int size);

返回值:如果数据压缩成功,返回压缩后数据的字节数;否则返回-1。

描述:用霍夫曼编码的方法压缩缓冲区original中的数据,original包含size字节的空间。压缩后的数据存入缓冲区compressed中。由于函数调用者并不知道compressed需要多大的空间,因此需要通过函数调用malloc来动态分配存储空间。当这块存储空间不再使用时,由调用者调用函数free来释放空间。

复杂度:O(n),其中n代表原始数据中符号的个数。

huffman_uncompress


int huffman_uncompress(const unsigned char *compressed, unsigned char **original);

返回值:如果解压缩成功,返回恢复后数据的字节数;否则返回-1。

描述:用霍夫曼的方法解压缩缓冲区compressed中的数据。假定缓冲区包含的数据是由Huffman_compress压缩产生的。恢复后的数据存入缓冲区original中。由于函数调用者并不知道original需要多大的空间,因此要通过函数调用malloc来动态分配存储空间。当这块存储空间不再使用时,由调用者调用free来释放空间。

复杂度:O(n),其中n是原始数据中符号的个数。

 霍夫曼编码的分析与实现

通过霍夫曼编码,在压缩过程中,我们将符号按照霍夫曼树进行编码从而压缩数据。在解压缩时,重建压缩过程中的霍夫曼树,同时将编码解码成符号本身。在本节介绍的实现过程中,一个原始符号都是用一个字节表示。

huffman_compress

huffman_compress操作使用霍夫曼编码来压缩数据。首先,它扫描数据,确定每个符号出现的频率。将频率存放到数组freqs中。完成对数据的扫描后,频率得到一定程度的缩放,因此它们可以只用一个字节来表示。当确定数据中某个符号的最大出现频率,并且相应确定其他频率后,这个扫描过程结束。由于数据中没有出现的符号,应该只是频率值为0的符号,所以执行一个简单的测试来确保当任何非0频率值其缩减为小于1时,最终应该将其值设为1而不是0。

一旦计算出了所有的频率,就调用函数build_tree来建立霍夫曼树。此函数首先将数据中至少出现过一次的符号插入优先队列中(实际上是一棵二叉树)。树中的结点由数据结构HuffNode定义。此结构包含两个成员:symbol为数据中的符号(仅在叶子结点中使用);freq为频率。每棵树初始状态下只包含一个结点,此结点存储一个符号和它的缩放频率(就像在数据freqs中记录和缩放的一样)。

要建立霍夫曼树,通过优先队列用一个循环对树做size-1次合并。在每次迭代过程中,两次调用pqueue_extract来提取根结点频率最小的两棵二叉树。然后,将两棵树合并到一棵新树中,将两棵树的频率和存放到新树的根结点中,接着把新的树保存回优先级队列中。这个过程会一直持续下去,直到size-1次迭代完成,此时优先级队列中只有一棵二叉树,这就是霍夫曼树。

利用上一步建立的霍夫曼树,调用函数build_table来建立一个霍夫曼编码表,此表指明每个符号的编码。表中每个条目都是一个HuffCode结构。此结构包含3个成员:used是一个默认为1的标志位,它指示此条目是否已经存放一个代码;code是存放在条目中的霍夫曼编码;size是编码包含的位数。每个编码都是一个短整数,因为可以证明当所有的频率调整到可以用一个字节来表示时,没有编码会大于16位。

使用一个有序的遍历方法来遍历霍夫曼树,从而构建这个表。在每次执行build_table的过程中,code 记录当前生成的编码,size保存编码的位数。在遍历树时,每当选择左分支时,将0追加到编码的末尾中;每当选择右分支时,将1追加到编码的末尾中。一旦到达一个叶子结点,就将霍夫曼编码存放到编码表合适的条目中。在存放每个编码的同时,调用函数htons,以确保编码是以大端字节格式存放。这一步非常重要,因为在下一步生成压缩数据时需要用大端格式,同样在解压缩过程中也需要大端格式。

在产生压缩数据的同时,使用ipos来保存原始数据中正在处理的当前字节,并用opos来保存向压缩数据缓冲区写入的当前位。首先,缩写一个头文件,这有助于在huffman_uncompress中重建霍夫曼树。这个头文件包含一个四字节的值,表示待编码的符号个数,后面跟着的是所有256个可能的符号出现的缩放频率,也包括0。最后对数据编码,一次读取一个符号,在表中查找到它的霍夫曼编码,并将每个编码存放到压缩缓冲区中。在压缩缓冲区中为每个字节分配空间。

huffman_compress的时间复杂度为O(n),其中n是原始数据中符号的数量。

huffman_uncompress

huffman_uncompress操作解压缩由huffman_compress压缩的数据。首先,此操作读取追加到压缩数据的头。回想一下,头的前4个字节包含编码符号的数量。这个值存放在size中。接下来的256个字节包含所有符号的缩放频率。

利用存放在头中的信息,调用build_tree重建压缩过程中用到的霍夫曼树。一旦重建了树,接下来就要生成已恢复数据的缓冲区。要做到这一点,从压缩数据中逐位读取数据。从霍夫曼树的根开始,只要遇到位数0,就选择左分支;只要遇到位数1,就选择右分支。一旦到达叶子结点,就获取一个符号的霍夫曼编码。解码符号存储在叶子中。所以, 将此符号写入已恢复数据的缓冲区中。写入数据之后,重新回到根部,然后重复以上过程。使用ipos来保存向压缩数据缓冲区写入的当前位,并用opos来保存写入恢复缓冲区中的当前字节。一旦opos到达size,就从原始数据中生成了所有的符号。

huffman_uncompress的时间复杂度为O(n)。其中n是原始数据中符号的数量。这是因为对每个要解码符号来说,在霍夫曼树中向下寻找的深度是一个有界常量,这个常量依赖于数据中不同符号的数量。在本节的实现中,这个常量是256.建立霍夫曼树的过程不影响huffman_uncompress的复杂度,因为这个过程只依赖于数据中不同符号的个数。

 示例:霍夫曼编码的实现文件

复制代码

/*huffman.c*/#include <limit.h>#include <netinet/in.h>#include <stdlib.h>#include <string.h>#include "bit.h"#include "bitree.h"#include "compress.h"#include "pqueue.h"/*compare_freq 比较树中霍夫曼节点的频率*/static int compare_freq(const void *tree1,const void *tree2)
{
    HuffNode *root1,root2;    /*比较两棵二叉树根结点中所存储的频率大小*/
    root1 = (HuffNode *)bitree_data(bitree_root((const BiTree *)tree1));
    root2 = (HuffNode *)bitree_data(bitree_root((const BiTree *)tree2));    if(root1->freq < root2->freq)        return 1;    else if(root1->freq > root2->freq)        return -1;    else return 0;
}/*destroy_tree  消毁二叉树*/static void destroy_tree(void *tree)
{    /*从优先级队列中消毁并释放一棵二叉树*/
    bitree_destroy(tree);    free(tree);    return;
}/*buile_tree 构建霍夫曼树,每棵树初始只包含一个根结点*/static int bulid_tree(int *freqs,BiTree **tree)
{
    BiTree *init,           *merge,           *left,           *right;
    PQueue pqueue;
    HuffNode *data;    int size,c;    /*初始化二叉树优先级队列*/
    *tree = NULL;
     pqueue_init(&pqueue,compare_freq,destroy_tree);     for(c=0; c<=UCHAR_MAX; c++)
     {         if(freqs[c] != 0)
         {             /*建立当前字符及频率的二叉树*/
             if((init = (BiTree *)malloc(sizeof(BiTree))) == NULL)
             {
                 pqueue_destroy(&pqueue);                 return -1;
             }

             bitree_init(init,free);             if((data = (HuffNode*)malloc(sizeof(HuffNode))) == NULL)
             {
                 pqueue_destroy(&pqueue);                 return -1;
             }

             data->symbol = c;
             data->freq = freqs[c];             if(bitree_ins_left(init,NULL,data) != 0)
             {                 free(data);
                 bitree_destroy(init);                 free(init);
                 pqueue_destroy(&pqueue);                 return -1;
             }             /*将二叉树插入优先队列*/
             if(pqueue_insert(&pqueue,init) != 0)
             {
                 bitree_destroy(init);                 free(init);
                 pqueue_destroy(&pqueue);                 return -1;
             }
         }
     }     /*通过两两合并优先队列中的二叉树来构建霍夫曼树*/
     for(c=1; c<=size-1; c++)
     {         /*为合并后的树分配空间*/
         if((merge = (BiTree *)malloc(sizeof(BiTree))) == NULL)
         {
             pqueue_destroy(&pqueue);             return -1;
         }         /*提取队列中拥有最小频率的两棵树*/
         if(pqueue_extract(&pqueue,(void **)&left) != 0)
         {
             pqueue_destroy(&pqueue);             free(merge);             return -1;
         }         if(pqueue_extract(&pqueue,(void **)right) !=0)
         {
             pqueue_destroy(&pqueue);             free(merge);             return -1;
         }         /*分配新产生霍夫曼结点的空间*/
         if((data = (HuffNode *)malloc(sizeof(HuffNode))) == NULL)
         {
             pqueue_destroy(&pqueue);             free(merge);             return -1;
         }

         memset(data,0,sizeof(HuffNode));         /*求和前面提取的两棵树的频率*/
         data->freq = ((HuffNode *)bitree_data(bitree_root(left)))->freq +
                      ((HuffNode *)bitree_data(bitree_root(right)))->freq;        /*合并left、right两棵树*/
        if(bitree_merge(merge,left,right,data) != 0)
        {
            pqueue_destroy(&pqueue);            free(merge);            return -1;
        }        /*把合并后的树插入到优先级队列中,并释放left、right棵树*/
        if(pqueue_insert(&pqueue,merge) != 0)
        {
            pqueue_destroy(&pqueue);
            bitree_destroy(merge);            free(merge);            return -1;
        }        free(left);        free(right);
     }     /*优先队列中的最后一棵树即是霍夫曼树*/
     if(pqueue_extract(&pqueue,(void **)tree) != 0)
     {
         pqueue_destroy(&pqueue);         return -1;
     }     else
     {
         pqueue_destroy(&pqueue);
     }     return 0;
}/*build_table 建立霍夫曼编码表*/static void build_table(BiTreeNode *node, unsigned short code, unsigned char size, HuffCode *table)
{    if(!bitree_is_eob(node))
    {        if(!bitree_is_eob(bitree_left(node)))
        {            /*向左移动,并将0追加到当前代码中*/
            build_table(bitree_left(node),code<<1,size+1,table);
        }        if(!bitree_is_eob(bitree_right(node)))
        {            /*向右移动,并将1追加到当前代码中*/
            build_table(bitee_right(node),(code<<1) | 0x0001,size+1,table);
        }        if(bitree_is_eob(bitree_left(node)) && bitree_is_eob(bitree_right(node)))
        {            /*确保当前代码是大端格式*/
            code = htons(code);            /*将当前代码分配给叶子结点中的符号*/
            table[((HuffNode *)bitree_data(node))->symbol].used = 1;
            table[((HuffNode *)bitree_data(node))->symbol].code = code;
            table[((HuffNode *)bitree_data(node))->symbol].size = size;
        }
    }    return;
}/*huffman_compress 霍夫曼压缩*/int huffman_compress(const unsigned char *original, unsigned char **compressed, int size)
{
    BiTree        *tree;
    HuffCode      table[UCHAR_MAX + 1];    int           freqs[UCHAR_MAX + 1],
                  max,
                  scale,
                  hsize,
                  ipos,opos,cpos,
                  c,i;
    unsigned      *comp,*temp;    /*初始化,没有压缩数据的缓冲区*/
    *compressed = NULL;    /*获取原始数据中每个符号的频率*/
    for(c=0; c <= UCHAR_MAX; c++)
        freqs[c] = 0;

    ipos = 0;    if(size > 0)
    {        while(ipos < size)
        {
            freqs[original[ipos]]++;
            ipos++;
        }
    }    /*将频率缩放到一个字节*/
    max = UCHAR_MAX;    for(c=0; c<=UCHAR_MAX; c++)
    {        if(freqs[c] > max)
            max = freqs[c];
    }    for(c=0; c <= UCHAR_MAX; c++)
    {
        scale = (int)(freqs[c] / ((double)max / (double)UCHAR_MAX));        if(scale == 0 && freqs[c] != 0)
            freqs[c] = 1;        else
            freqs[c] = scale;
    }    /*建立霍夫曼树和编码表*/
    if(build_tree(freqs,&tree) != 0)        return -1;    for(c=0; c<=UCHAR_MAX; c++)
        memset(&table[c],0,sizeof(HuffCode));

    bulid_table(bitree_root(tree), 0x0000, 0, table);

    bitree_destroy(tree);    free(tree);    /*编写一个头代码*/
    hsize = sizeof(int) + (UNCHAR_MAX + 1);    if((comp = (unsigned char *)malloc(hsize)) == NULL)        return -1;

    memcpy(comp,&size,sizeof(int));    for(c=0; c<=UCHAR_MAX; c++)
        comp[sizeof(int) + c] = (unsigned char)freqs[c];    /*压缩数据*/
    ipos = 0;
    opos = hsize*8;    while(ipos < size)
    {        /*获取原始数据中的下一个字符*/
        c = original[ipos];        /*将字符对应的编码写入压缩数据的缓存中*/
        for(i=0; i<table[c].size; i++)
        {            if(opos % 8 == 0)
            {                /*为压缩数据的缓存区分配另一个字节*/
                if((temp = (unsigned char *)realloc(comp,(opos/8)+1)) == NULL)
                {                    free(comp);                    return -1;
                }
                comp = temp;
            }
            cpos = (sizeof(short)*8) - table[c].size + i;
            bit_set(comp, opos, bit_get((unsigned char *)&table[c].code,cpos));
            opos++;
        }
        ipos++;
    }    /*指向压缩数据的缓冲区*/
    *compressed = comp;    /*返回压缩缓冲区中的字节数*/
    return ((opos - 1) / 8) + 1;
}/*huffman_uncompress  解压缩霍夫曼数据*/int huffman_uncompress(const unsigned char *compressed, unsigned char **original)
{
    BiTree      *tree;
    BiTreeNode  *node;    int          freqs[UCHAR_MAX + 1],
                 hsize,
                 size,
                 ipos,opos,
                 state,
                 c;
    unsigned char *orig,*temp;    
    /*初始化*/
    *original = orig = NULL;    
    /*从压缩数据缓冲区中获取头文件信息*/
    hize = sizeof(int) + (UCHAR_MAX + 1);
    memcpy(&size,compressed,sizeof(int));    
    for(c=0; c<=UCHAR_MAX; c++)
        freqs[c] = compressed[sizeof(int) + c];    
    /*重建前面压缩数据时的霍夫曼树*/
    if(bulid_tree(freqs,&tree) != 0)        return -1;    
    /*解压缩数据*/
    ipos = hsize * 8;
    opos = 0;
    node = bitree_root(tree);    
    while(opos < size)
    {        /*从压缩数据中获取位状态*/
        state = bit_get(compressed,ipos);
        ipos++;        
        if(state == 0)
        {            /*向左移动*/
            if(bitree_is_eob(node) || bitree_is_eob(bitree_left(node)))
            {
                bitree_destroy(tree);                free(tree);                return -1;
            }            else node = bitree_left(node);
        }        else 
        {            /*向右移动*/
            if(bitree_is_eob(node) || bitree_is_eob(bitree_right(node)))
            {
                bitree_destroy(tree);                free(tree);                return -1;
            }            else node = bitree_right(node);
        }        
        if(bitree_is_eob(bitree_left(node)) && bitree_is_eob(bitree_right(node)))
        {            /*将叶子结点中的符号写入原始数据缓冲区*/
            if(opos > 0)
            {                if((temp = (unsigned char *)realloc(orig,opos+1)) == NULL)
                {
                    bitree_destroy(tree);                    free(tree);                    free(orig);                    return -1;
                }
                orig = temp;
            }            else 
            {                if((orig = (unsigned char *)malloc(1)) == NULL)
                {
                    bitree_destroy(tree);                    free(tree);                    return -1;
                }
            }
            
            orig[opos] = ((HuffNode *)bitree_data(node))->symbol;
            opos++;            
            /*返回到霍夫曼树的顶部*/
            node = bitree_root(tree);
        }
    }
    bitree_destroy(tree);    free(tree);    
    /*把向原始数据缓冲区*/
    *original = orig;    
    /*返回原始数据中的字节数*/
    return opos;
}

复制代码

原文出处

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP