一. 概述
Android系统将进程做得很友好的封装,对于上层app开发者来说进程几乎是透明的. 了解Android的朋友,一定知道Android四大组件,但对于进程可能会相对较陌生. 一个进程里面可以跑多个app(通过share uid的方式), 一个app也可以跑在多个进程里(通过配置Android:process属性).
再进一步进程是如何创建的, 可能很多人不知道fork的存在. 在我的文章理解Android进程创建流程 集中一点详细介绍了Process.start
的过程是如何一步步创建进程.本文则是从另个角度来全局性讲解Android进程启动全过程所涉及的根脉, 先来看看AMS.startProcessLocked方法.
二. 四大组件与进程
2.1 startProcessLocked
在ActivityManagerService.java
关于启动进程有4个同名不同参数的重载方法, 为了便于说明,以下4个方法依次记为1(a)
,1(b)
, 2(a)
, 2(b)
:
//方法 1(a)final ProcessRecord startProcessLocked( String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, String hostingType, ComponentName hostingName, boolean allowWhileBooting, boolean isolated, boolean keepIfLarge)//方法 1(b)final ProcessRecord startProcessLocked( String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, String hostingType, ComponentName hostingName, boolean allowWhileBooting, boolean isolated, int isolatedUid, boolean keepIfLarge, String abiOverride, String entryPoint, String[] entryPointArgs, Runnable crashHandler)//方法 2(a)private final void startProcessLocked( ProcessRecord app, String hostingType, String hostingNameStr)//方法 2(b)private final void startProcessLocked( ProcessRecord app, String hostingType, String hostingNameStr, String abiOverride, String entryPoint, String[] entryPointArgs)
1(a) ==> 1(b): 方法1(a)将isolatedUid=0,其他参数赋值为null,再调用给1(b)
final ProcessRecord startProcessLocked(String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, String hostingType, ComponentName hostingName, boolean allowWhileBooting, boolean isolated, boolean keepIfLarge) { return startProcessLocked(processName, info, knownToBeDead, intentFlags, hostingType, hostingName, allowWhileBooting, isolated, 0 /* isolatedUid */, keepIfLarge, null /* ABI override */, null /* entryPoint */, null /* entryPointArgs */, null /* crashHandler */); }
2(a) ==> 2(b): 方法2(a)将其他3个参数abiOverride,entryPoint, entryPointArgs赋值为null,再调用给2(b)
private final void startProcessLocked(ProcessRecord app, String hostingType, String hostingNameStr) { startProcessLocked(app, hostingType, hostingNameStr, null /* abiOverride */, null /* entryPoint */, null /* entryPointArgs */); }
小结:
1(a),1(b)的第一个参数为String类型的进程名processName,
2(a), 2(b)的第一个参数为ProcessRecord类型进程记录信息ProcessRecord;
1系列的方法最终调用到2系列的方法;
2.2 四大组件与进程
Activity, Service, ContentProvider, BroadcastReceiver这四大组件,在启动的过程,当其所承载的进程不存在时需要先创建进程. 这个创建进程的过程是调用前面讲到的startProcessLocked方法1(a) . 调用流程: 1(a) => 1(b) ==> 2(b). 下面再简单说说这4大组件与进程创建是在何时需要创建的.
2.2.1 Activity
启动Activity过程: 调用startActivity,该方法经过层层调用,最终会调用ActivityStackSupervisor.java中的startSpecificActivityLocked
,当activity所属进程还没启动的情况下,则需要创建相应的进程.
[-> ActivityStackSupervisor.java]
void startSpecificActivityLocked(...) { ProcessRecord app = mService.getProcessRecordLocked(r.processName, r.info.applicationInfo.uid, true); if (app != null && app.thread != null) { ... //进程已创建的case return } mService.startProcessLocked(r.processName, r.info.applicationInfo, true, 0, "activity", r.intent.getComponent(), false, false, true); }
2.2.2 Service
启动服务过程: 调用startService,该方法经过层层调用,最终会调用ActiveServices.java中的bringUpServiceLocked
,当Service进程没有启动的情况(app==null), 则需要创建相应的进程. 更多关于Service, 见startService流程分析
[-> ActiveServices.java]
private final String bringUpServiceLocked(...){ ... ProcessRecord app = mAm.getProcessRecordLocked(procName, r.appInfo.uid, false); if (app == null) { if ((app=mAm.startProcessLocked(procName, r.appInfo, true, intentFlags, "service", r.name, false, isolated, false)) == null) { ... } } ... }
2.2.3 ContentProvider
ContentProvider处理过程: 调用ContentResolver.query该方法经过层层调用, 最终会调用到AMS.java中的getContentProviderImpl
,当ContentProvider所对应进程不存在,则需要创建新进程. 更多关于ContentProvider,见理解ContentProvider原理(一)
[-> AMS.java]
private final ContentProviderHolder getContentProviderImpl(...) { ... ProcessRecord proc = getProcessRecordLocked(cpi.processName, cpr.appInfo.uid, false); if (proc != null && proc.thread != null) { ... //进程已创建的case } else { proc = startProcessLocked(cpi.processName, cpr.appInfo, false, 0, "content provider", new ComponentName(cpi.applicationInfo.packageName,cpi.name), false, false, false); } ... }
2.2.4 Broadcast
广播处理过程: 调用sendBroadcast,该方法经过层层调用, 最终会调用到BroadcastQueue.java中的processNextBroadcast
,当BroadcastReceiver所对应的进程尚未启动,则创建相应进程. 更多关于broadcast, 见Android Broadcast广播机制分析.
[-> BroadcastQueue.java]
final void processNextBroadcast(boolean fromMsg) { ... ProcessRecord app = mService.getProcessRecordLocked(targetProcess, info.activityInfo.applicationInfo.uid, false); if (app != null && app.thread != null) { ... //进程已创建的case return } if ((r.curApp=mService.startProcessLocked(targetProcess, info.activityInfo.applicationInfo, true, r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND, "broadcast", r.curComponent, (r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0, false, false)) == null) { ... } ... }
2.3 小节
Activity, Service, ContentProvider, BroadcastReceiver这四大组件在启动时,当所承载的进程不存在时,都需要创建. 进程的创建过程交由系统进程system_server来完成的.
简称:
ATP: ApplicationThreadProxy
AT: ApplicationThread (继承于ApplicationThreadNative)
AMP: ActivityManagerProxy
AMS: ActivityManagerService (继承于ActivityManagerNative)
图解:
system_server进程中调用
startProcessLocked
方法,该方法最终通过socket方式,将需要创建新进程的消息告知Zygote进程,并阻塞等待Socket返回新创建进程的pid;Zygote进程接收到system_server发送过来的消息, 则通过fork的方法,将zygote自身进程复制生成新的进程,并将ActivityThread相关的资源加载到新进程app process,这个进程可能是用于承载activity等组件;
创建完新进程后fork返回两次, 在新进程app process向servicemanager查询system_server进程中binder服务端AMS,获取相对应的Client端,也就是AMP. 有了这一对binder c/s对, 那么app process便可以通过binder向跨进程system_server发送请求,即attachApplication()
system_server进程接收到相应binder操作后,经过多次调用,利用ATP向app process发送binder请求, 即bindApplication.
system_server拥有ATP/AMS, 每一个新创建的进程都会有一个相应的AT/AMS,从而可以跨进程 进行相互通信. 这便是进程创建过程的完整生态链.
四大组件的进程创建时机:
组件 | 创建方法 |
---|---|
Activity | ASS.startSpecificActivityLocked() |
Service | ActiveServices.bringUpServiceLocked() |
ContentProvider | AMS.getContentProviderImpl() |
Broadcast | BroadcastQueue.processNextBroadcast() |
三. 进程启动全过程
前面刚已介绍四大组件的创建进程的过程是调用1(a) startProcessLocked
方法,该方法会再调用1(b)方法. 接下来从该方法开始往下讲述.
3.1 AMS.startProcessLocked
final ProcessRecord startProcessLocked(String processName, ApplicationInfo info, boolean knownToBeDead, int intentFlags, String hostingType, ComponentName hostingName, boolean allowWhileBooting, boolean isolated, int isolatedUid, boolean keepIfLarge, String abiOverride, String entryPoint, String[] entryPointArgs, Runnable crashHandler) { long startTime = SystemClock.elapsedRealtime(); ProcessRecord app; if (!isolated) { //根据进程名和uid检查相应的ProcessRecord app = getProcessRecordLocked(processName, info.uid, keepIfLarge); if ((intentFlags & Intent.FLAG_FROM_BACKGROUND) != 0) { //如果当前处于后台进程,检查当前进程是否处于bad进程列表 if (mBadProcesses.get(info.processName, info.uid) != null) { return null; } } else { //当用户明确地启动进程,则清空crash次数,以保证其不处于bad进程直到下次再弹出crash对话框。 mProcessCrashTimes.remove(info.processName, info.uid); if (mBadProcesses.get(info.processName, info.uid) != null) { mBadProcesses.remove(info.processName, info.uid); if (app != null) { app.bad = false; } } } } else { //对于孤立进程,无法再利用已存在的进程 app = null; } //当存在ProcessRecord,且已分配pid(正在启动或者已经启动), // 且caller并不认为该进程已死亡或者没有thread对象attached到该进程.则不应该清理该进程 if (app != null && app.pid > 0) { if (!knownToBeDead || app.thread == null) { //如果这是进程中新package,则添加到列表 app.addPackage(info.packageName, info.versionCode, mProcessStats); return app; } //当ProcessRecord已经被attached到先前的一个进程,则杀死并清理该进程 killProcessGroup(app.info.uid, app.pid); handleAppDiedLocked(app, true, true); } String hostingNameStr = hostingName != null? hostingName.flattenToShortString() : null; if (app == null) { // 创建新的Process Record对象 app = newProcessRecordLocked(info, processName, isolated, isolatedUid); if (app == null) { return null; } app.crashHandler = crashHandler; } else { //如果这是进程中新package,则添加到列表 app.addPackage(info.packageName, info.versionCode, mProcessStats); } //当系统未准备完毕,则将当前进程加入到mProcessesOnHold if (!mProcessesReady && !isAllowedWhileBooting(info) && !allowWhileBooting) { if (!mProcessesOnHold.contains(app)) { mProcessesOnHold.add(app); } return app; } // 启动进程【见小节3.2】 startProcessLocked(app, hostingType, hostingNameStr, abiOverride, entryPoint, entryPointArgs); return (app.pid != 0) ? app : null; }
主要功能:
对于非isolated进程,则根据进程名和uid来查询相应的ProcessRecord结构体. 如果当前进程处于后台且当前进程处于mBadProcesses列表,则直接返回;否则清空crash次数,以保证其不处于bad进程直到下次再弹出crash对话框。
当存在ProcessRecord,且已分配pid(正在启动或者已经启动)的情况下
当caller并不认为该进程已死亡或者没有thread对象attached到该进程.则不应该清理该进程,则直接返回;
否则杀死并清理该进程;
当ProcessRecord为空则新建一个,当创建失败则直接返回;
当系统未准备完毕,则将当前进程加入到mProcessesOnHold, 并直接返回;
最后启动新进程,其中参数含义:
hostingType可取值为”activity”,”service”,”broadcast”,”content provider”;
hostingNameStr数据类型为ComponentName,代表的是具体相对应的组件名.
另外, 进程的uid是在进程真正创建之前调用newProcessRecordLocked
方法来获取的uid, 这里会考虑是否为isolated的情况.
3.2 AMS.startProcessLocked
private final void startProcessLocked(ProcessRecord app, String hostingType, String hostingNameStr, String abiOverride, String entryPoint, String[] entryPointArgs) { long startTime = SystemClock.elapsedRealtime(); //当app的pid大于0且不是当前进程的pid,则从mPidsSelfLocked中移除该app.pid if (app.pid > 0 && app.pid != MY_PID) { synchronized (mPidsSelfLocked) { mPidsSelfLocked.remove(app.pid); mHandler.removeMessages(PROC_START_TIMEOUT_MSG, app); } app.setPid(0); } //从mProcessesOnHold移除该app mProcessesOnHold.remove(app); updateCpuStats(); //更新cpu统计信息 try { try { if (AppGlobals.getPackageManager().isPackageFrozen(app.info.packageName)) { //当前package已被冻结,则抛出异常 throw new RuntimeException("Package " + app.info.packageName + " is frozen!"); } } catch (RemoteException e) { throw e.rethrowAsRuntimeException(); } int uid = app.uid; int[] gids = null; int mountExternal = Zygote.MOUNT_EXTERNAL_NONE; if (!app.isolated) { int[] permGids = null; try { //通过Package Manager获取gids final IPackageManager pm = AppGlobals.getPackageManager(); permGids = pm.getPackageGids(app.info.packageName, app.userId); MountServiceInternal mountServiceInternal = LocalServices.getService( MountServiceInternal.class); mountExternal = mountServiceInternal.getExternalStorageMountMode(uid, app.info.packageName); } catch (RemoteException e) { throw e.rethrowAsRuntimeException(); } //添加共享app和gids,用于app直接共享资源 if (ArrayUtils.isEmpty(permGids)) { gids = new int[2]; } else { gids = new int[permGids.length + 2]; System.arraycopy(permGids, 0, gids, 2, permGids.length); } gids[0] = UserHandle.getSharedAppGid(UserHandle.getAppId(uid)); gids[1] = UserHandle.getUserGid(UserHandle.getUserId(uid)); } //根据不同参数,设置相应的debugFlags ... app.gids = gids; app.requiredAbi = requiredAbi; app.instructionSet = instructionSet; boolean isActivityProcess = (entryPoint == null); if (entryPoint == null) entryPoint = "android.app.ActivityThread"; //请求Zygote创建新进程[见3.3] Process.ProcessStartResult startResult = Process.start(entryPoint, app.processName, uid, uid, gids, debugFlags, mountExternal, app.info.targetSdkVersion, app.info.seinfo, requiredAbi, instructionSet, app.info.dataDir, entryPointArgs); ... if (app.persistent) { Watchdog.getInstance().processStarted(app.processName, startResult.pid); } //重置ProcessRecord的成员变量 app.setPid(startResult.pid); app.usingWrapper = startResult.usingWrapper; app.removed = false; app.killed = false; app.killedByAm = false; //将新创建的进程加入到mPidsSelfLocked synchronized (mPidsSelfLocked) { this.mPidsSelfLocked.put(startResult.pid, app); if (isActivityProcess) { Message msg = mHandler.obtainMessage(PROC_START_TIMEOUT_MSG); msg.obj = app; //延迟发送消息PROC_START_TIMEOUT_MSG mHandler.sendMessageDelayed(msg, startResult.usingWrapper ? PROC_START_TIMEOUT_WITH_WRAPPER : PROC_START_TIMEOUT); } } } catch (RuntimeException e) { app.setPid(0); //进程创建失败,则重置pid } }
根据不同参数,设置相应的debugFlags,比如在AndroidManifest.xml中设置androidd:debuggable为true,代表app运行在debug模式,则增加debugger标识以及开启JNI check功能
调用Process.start来创建新进程;
重置ProcessRecord的成员变量, 一般情况下超时10s后发送PROC_START_TIMEOUT_MSG的handler消息;
关于Process.start()是通过socket通信告知Zygote创建fork子进程,创建新进程后将ActivityThread类加载到新进程,并调用ActivityThread.main()方法。详细过程见理解Android进程创建流程,接下来进入AT.main方法.
3.3 ActivityThread.main
[-> ActivityThread.java]
public static void main(String[] args) { //性能统计默认是关闭的 SamplingProfilerIntegration.start(); //将当前进程所在userId赋值给sCurrentUser Environment.initForCurrentUser(); EventLogger.setReporter(new EventLoggingReporter()); AndroidKeyStoreProvider.install(); //确保可信任的CA证书存放在正确的位置 final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId()); TrustedCertificateStore.setDefaultUserDirectory(configDir); Process.setArgV0("<pre-initialized>"); //创建主线程的Looper对象, 该Looper是不运行退出 Looper.prepareMainLooper(); //创建ActivityThread对象 ActivityThread thread = new ActivityThread(); //建立Binder通道 【见流程3.4】 thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } // 当设置为true时,可打开消息队列的debug log信息 if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); } Looper.loop(); //消息循环运行 throw new RuntimeException("Main thread loop unexpectedly exited"); }
创建主线程的Looper对象: 该Looper是不运行退出. 也就是说主线程的Looper是在进程创建完成时自动创建完成,如果子线程也需要创建handler通信过程,那么就需要手动创建Looper对象,并且每个线程只能创建一次.
创建ActivityThread对象
thread = new ActivityThread()
: 该过程会初始化几个很重要的变量:mAppThread = new ApplicationThread()
mLooper = Looper.myLooper()
mH = new H(),
H
继承于Handler
;用于处理组件的生命周期.attach过程是当前主线程向system_server进程通信的过程, 将thread信息告知AMS.接下来还会进一步说明该过程.
sMainThreadHandler通过getHandler(),获取的对象便是
mH
,这就是主线程的handler对象.
之后主线程调用Looper.loop(),进入消息循环状态, 当没有消息时主线程进入休眠状态, 一旦有消息到来则唤醒主线程并执行相关操作.
3.4. ActivityThread.attach
[-> ActivityThread.java]
private void attach(boolean system) { sCurrentActivityThread = this; mSystemThread = system; if (!system) { //开启虚拟机的jit即时编译功能 ViewRootImpl.addFirstDrawHandler(new Runnable() { @Override public void run() { ensureJitEnabled(); } }); android.ddm.DdmHandleAppName.setAppName("<pre-initialized>", UserHandle.myUserId()); RuntimeInit.setApplicationObject(mAppThread.asBinder()); //创建ActivityManagerProxy对象 final IActivityManager mgr = ActivityManagerNative.getDefault(); try { //调用基于IActivityManager接口的Binder通道【见流程3.5】 mgr.attachApplication(mAppThread); } catch (RemoteException ex) { } //观察是否快接近heap的上限 BinderInternal.addGcWatcher(new Runnable() { @Override public void run() { if (!mSomeActivitiesChanged) { return; } Runtime runtime = Runtime.getRuntime(); long dalvikMax = runtime.maxMemory(); long dalvikUsed = runtime.totalMemory() - runtime.freeMemory(); if (dalvikUsed > ((3*dalvikMax)/4)) { mSomeActivitiesChanged = false; try { //当已用内存超过最大内存的3/4,则请求释放内存空间 mgr.releaseSomeActivities(mAppThread); } catch (RemoteException e) { } } } }); } else { ... } //添加dropbox日志到libcore DropBox.setReporter(new DropBoxReporter()); //添加Config回调接口 ViewRootImpl.addConfigCallback(new ComponentCallbacks2() { @Override public void onConfigurationChanged(Configuration newConfig) { synchronized (mResourcesManager) { if (mResourcesManager.applyConfigurationToResourcesLocked(newConfig, null)) { if (mPendingConfiguration == null || mPendingConfiguration.isOtherSeqNewer(newConfig)) { mPendingConfiguration = newConfig; sendMessage(H.CONFIGURATION_CHANGED, newConfig); } } } } @Override public void onLowMemory() { } @Override public void onTrimMemory(int level) { } }); }
对于非系统attach的处理流程:
创建线程来开启虚拟机的jit即时编译;
通过binder, 调用到AMS.attachApplication, 其参数mAppThread的数据类型为
ApplicationThread
观察是否快接近heap的上限,当已用内存超过最大内存的3/4,则请求释放内存空间
添加dropbox日志到libcore
添加Config回调接口
3.5 AMP.attachApplication
[-> ActivityManagerProxy.java]
public void attachApplication(IApplicationThread app) throws RemoteException{ Parcel data = Parcel.obtain(); Parcel reply = Parcel.obtain(); data.writeInterfaceToken(IActivityManager.descriptor); data.writeStrongBinder(app.asBinder()); mRemote.transact(ATTACH_APPLICATION_TRANSACTION, data, reply, 0); //【见流程3.6】 reply.readException(); data.recycle(); reply.recycle(); }
此处 descriptor = “android.app.IActivityManager”
3.6 AMN.onTransact
[-> ActivityManagerNative.java]
public boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws RemoteException { switch (code) { ... case ATTACH_APPLICATION_TRANSACTION: { data.enforceInterface(IActivityManager.descriptor); //获取ApplicationThread的binder代理类 ApplicationThreadProxy IApplicationThread app = ApplicationThreadNative.asInterface( data.readStrongBinder()); if (app != null) { attachApplication(app); //此处是ActivityManagerService类中的方法 【见流程3.7】 } reply.writeNoException(); return true; } } }
3.7 AMS.attachApplication
[-> ActivityManagerService.java]
public final void attachApplication(IApplicationThread thread) { synchronized (this) { int callingPid = Binder.getCallingPid(); final long origId = Binder.clearCallingIdentity(); attachApplicationLocked(thread, callingPid); // 【见流程3.8】 Binder.restoreCallingIdentity(origId); } }
此处的thread
便是ApplicationThreadProxy对象,用于跟前面通过Process.start()所创建的进程中ApplicationThread对象进行通信.
3.8 AMS.attachApplicationLocked
[-> ActivityManagerService.java]
private final boolean attachApplicationLocked(IApplicationThread thread, int pid) { ProcessRecord app; if (pid != MY_PID && pid >= 0) { synchronized (mPidsSelfLocked) { app = mPidsSelfLocked.get(pid); // 根据pid获取ProcessRecord } } else { app = null; } if (app == null) { if (pid > 0 && pid != MY_PID) { //ProcessRecord为空,则杀掉该进程 Process.killProcessQuiet(pid); } else { //退出新建进程的Looper thread.scheduleExit(); } return false; } //还刚进入attach过程,此时thread应该为null,若不为null则表示该app附到上一个进程,则立刻清空 if (app.thread != null) { handleAppDiedLocked(app, true, true); } final String processName = app.processName; try { //绑定死亡通知 AppDeathRecipient adr = new AppDeathRecipient(app, pid, thread); thread.asBinder().linkToDeath(adr, 0); app.deathRecipient = adr; } catch (RemoteException e) { app.resetPackageList(mProcessStats); startProcessLocked(app, "link fail", processName); //重新启动进程 return false; } //重置进程信息 app.makeActive(thread, mProcessStats); //执行完该语句,则app.thread便不再为空 app.curAdj = app.setAdj = -100; app.curSchedGroup = app.setSchedGroup = Process.THREAD_GROUP_DEFAULT; app.forcingToForeground = null; updateProcessForegroundLocked(app, false, false); app.hasShownUi = false; app.debugging = false; app.cached = false; app.killedByAm = false; mHandler.removeMessages(PROC_START_TIMEOUT_MSG, app); //移除进程启动超时的消息 //系统处于ready状态或者该app为FLAG_PERSISTENT进程,则为true boolean normalMode = mProcessesReady || isAllowedWhileBooting(app.info); List<ProviderInfo> providers = normalMode ? generateApplicationProvidersLocked(app) : null; //app进程存在正在启动中的provider,则超时10s后发送CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息 if (providers != null && checkAppInLaunchingProvidersLocked(app)) { Message msg = mHandler.obtainMessage(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG); msg.obj = app; mHandler.sendMessageDelayed(msg, CONTENT_PROVIDER_PUBLISH_TIMEOUT); } try { ... ensurePackageDexOpt(app.instrumentationInfo != null ? app.instrumentationInfo.packageName : app.info.packageName); ApplicationInfo appInfo = app.instrumentationInfo != null ? app.instrumentationInfo : app.info; ... // 绑定应用 [见流程3.9] thread.bindApplication(processName, appInfo, providers, app.instrumentationClass, profilerInfo, app.instrumentationArguments, app.instrumentationWatcher, app.instrumentationUiAutomationConnection, testMode, enableOpenGlTrace, isRestrictedBackupMode || !normalMode, app.persistent, new Configuration(mConfiguration), app.compat, getCommonServicesLocked(app.isolated), mCoreSettingsObserver.getCoreSettingsLocked()); //更新进程LRU队列 updateLruProcessLocked(app, false, null); app.lastRequestedGc = app.lastLowMemory = SystemClock.uptimeMillis(); } catch (Exception e) { app.resetPackageList(mProcessStats); app.unlinkDeathRecipient(); //每当bind操作失败,则重启启动进程, 此处有可能会导致进程无限重启 startProcessLocked(app, "bind fail", processName); return false; } mPersistentStartingProcesses.remove(app); mProcessesOnHold.remove(app); boolean badApp = false; boolean didSomething = false; //Activity: 检查最顶层可见的Activity是否等待在该进程中运行 if (normalMode) { try { if (mStackSupervisor.attachApplicationLocked(app)) { didSomething = true; } } catch (Exception e) { badApp = true; } } //Service: 寻找所有需要在该进程中运行的服务 if (!badApp) { try { didSomething |= mServices.attachApplicationLocked(app, processName); } catch (Exception e) { badApp = true; } } //Broadcast: 检查是否在这个进程中有下一个广播接收者 if (!badApp && isPendingBroadcastProcessLocked(pid)) { try { didSomething |= sendPendingBroadcastsLocked(app); } catch (Exception e) { badApp = true; } } //检查是否在这个进程中有下一个backup代理 if (!badApp && mBackupTarget != null && mBackupTarget.appInfo.uid == app.uid) { ensurePackageDexOpt(mBackupTarget.appInfo.packageName); try { thread.scheduleCreateBackupAgent(mBackupTarget.appInfo, compatibilityInfoForPackageLocked(mBackupTarget.appInfo), mBackupTarget.backupMode); } catch (Exception e) { badApp = true; } } if (badApp) { //杀掉bad应用 app.kill("error during init", true); handleAppDiedLocked(app, false, true); return false; } if (!didSomething) { updateOomAdjLocked(); //更新adj的值 } return true; }
根据pid从mPidsSelfLocked中查询到相应的ProcessRecord对象app;
当app==null,意味着本次创建的进程不存在, 则直接返回.
还刚进入attach过程,此时thread应该为null,若不为null则表示该app附到上一个进程,则调用handleAppDiedLocked清理.
绑定死亡通知,当进程pid死亡时会通过binder死亡回调,来通知system_server进程死亡的消息;
重置ProcessRecord进程信息, 此时app.thread也赋予了新值,便不再为空.
app进程存在正在启动中的provider,则超时10s后发送CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息
调用thread.bindApplication绑定应用进程, 后面再进一步说明
处理Provider, Activity, Service, Broadcast相应流程
下面,再来说说thread.bindApplication的过程.
3.9 ATP.bindApplication
[-> ApplicationThreadNative.java ::ApplicationThreadProxy]
class ApplicationThreadProxy implements IApplicationThread { ... public final void bindApplication(String packageName, ApplicationInfo info, List<ProviderInfo> providers, ComponentName testName, ProfilerInfo profilerInfo, Bundle testArgs, IInstrumentationWatcher testWatcher, IUiAutomationConnection uiAutomationConnection, int debugMode, boolean openGlTrace, boolean restrictedBackupMode, boolean persistent, Configuration config, CompatibilityInfo compatInfo, Map<String, IBinder> services, Bundle coreSettings) throws RemoteException { Parcel data = Parcel.obtain(); data.writeInterfaceToken(IApplicationThread.descriptor); data.writeString(packageName); info.writeToParcel(data, 0); data.writeTypedList(providers); if (testName == null) { data.writeInt(0); } else { data.writeInt(1); testName.writeToParcel(data, 0); } if (profilerInfo != null) { data.writeInt(1); profilerInfo.writeToParcel(data, Parcelable.PARCELABLE_WRITE_RETURN_VALUE); } else { data.writeInt(0); } data.writeBundle(testArgs); data.writeStrongInterface(testWatcher); data.writeStrongInterface(uiAutomationConnection); data.writeInt(debugMode); data.writeInt(openGlTrace ? 1 : 0); data.writeInt(restrictedBackupMode ? 1 : 0); data.writeInt(persistent ? 1 : 0); config.writeToParcel(data, 0); compatInfo.writeToParcel(data, 0); data.writeMap(services); data.writeBundle(coreSettings); mRemote.transact(BIND_APPLICATION_TRANSACTION, data, null, IBinder.FLAG_ONEWAY); data.recycle(); } ... }
ATP经过binder ipc传递到ATN的onTransact过程.
3.10 ATN.onTransact
[-> ApplicationThreadNative.java]
public boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws RemoteException { switch (code) { ... case BIND_APPLICATION_TRANSACTION: { data.enforceInterface(IApplicationThread.descriptor); String packageName = data.readString(); ApplicationInfo info = ApplicationInfo.CREATOR.createFromParcel(data); List<ProviderInfo> providers = data.createTypedArrayList(ProviderInfo.CREATOR); ComponentName testName = (data.readInt() != 0) ? new ComponentName(data) : null; ProfilerInfo profilerInfo = data.readInt() != 0 ? ProfilerInfo.CREATOR.createFromParcel(data) : null; Bundle testArgs = data.readBundle(); IBinder binder = data.readStrongBinder(); IInstrumentationWatcher testWatcher = IInstrumentationWatcher.Stub.asInterface(binder); binder = data.readStrongBinder(); IUiAutomationConnection uiAutomationConnection = IUiAutomationConnection.Stub.asInterface(binder); int testMode = data.readInt(); boolean openGlTrace = data.readInt() != 0; boolean restrictedBackupMode = (data.readInt() != 0); boolean persistent = (data.readInt() != 0); Configuration config = Configuration.CREATOR.createFromParcel(data); CompatibilityInfo compatInfo = CompatibilityInfo.CREATOR.createFromParcel(data); HashMap<String, IBinder> services = data.readHashMap(null); Bundle coreSettings = data.readBundle(); //[见流程3.11] bindApplication(packageName, info, providers, testName, profilerInfo, testArgs, testWatcher, uiAutomationConnection, testMode, openGlTrace, restrictedBackupMode, persistent, config, compatInfo, services, coreSettings); return true; } ... }
3.11 AT.bindApplication
[-> ActivityThread.java ::ApplicationThread]
public final void bindApplication(String processName, ApplicationInfo appInfo, List<ProviderInfo> providers, ComponentName instrumentationName, ProfilerInfo profilerInfo, Bundle instrumentationArgs, IInstrumentationWatcher instrumentationWatcher, IUiAutomationConnection instrumentationUiConnection, int debugMode, boolean enableOpenGlTrace, boolean isRestrictedBackupMode, boolean persistent, Configuration config, CompatibilityInfo compatInfo, Map<String, IBinder> services, Bundle coreSettings) { if (services != null) { //将services缓存起来, 减少binder检索服务的次数 ServiceManager.initServiceCache(services); } //发送消息H.SET_CORE_SETTINGS setCoreSettings(coreSettings); IPackageManager pm = getPackageManager(); android.content.pm.PackageInfo pi = null; try { pi = pm.getPackageInfo(appInfo.packageName, 0, UserHandle.myUserId()); } catch (RemoteException e) { } if (pi != null) { boolean sharedUserIdSet = (pi.sharedUserId != null); boolean processNameNotDefault = (pi.applicationInfo != null && !appInfo.packageName.equals(pi.applicationInfo.processName)); boolean sharable = (sharedUserIdSet || processNameNotDefault); if (!sharable) { VMRuntime.registerAppInfo(appInfo.packageName, appInfo.dataDir, appInfo.processName); } } //初始化AppBindData, 再发送消息H.BIND_APPLICATION AppBindData data = new AppBindData(); data.processName = processName; data.appInfo = appInfo; data.providers = providers; data.instrumentationName = instrumentationName; data.instrumentationArgs = instrumentationArgs; data.instrumentationWatcher = instrumentationWatcher; data.instrumentationUiAutomationConnection = instrumentationUiConnection; data.debugMode = debugMode; data.enableOpenGlTrace = enableOpenGlTrace; data.restrictedBackupMode = isRestrictedBackupMode; data.persistent = persistent; data.config = config; data.compatInfo = compatInfo; data.initProfilerInfo = profilerInfo; sendMessage(H.BIND_APPLICATION, data); }
其中setCoreSettings()过程就是调用sendMessage(H.SET_CORE_SETTINGS,
coreSettings)
来向主线程发送SET_CORE_SETTINGS消息.bindApplication方法的主要功能是依次向主线程发送消息H.SET_CORE_SETTINGS
和H.BIND_APPLICATION
. 接下来再来说说这两个消息的处理过程
3.12 H.SET_CORE_SETTINGS
[-> ActivityThread.java ::H]
当主线程收到H.SET_CORE_SETTINGS,则调用handleSetCoreSettings
private void handleSetCoreSettings(Bundle coreSettings) { synchronized (mResourcesManager) { mCoreSettings = coreSettings; } onCoreSettingsChange(); }private void onCoreSettingsChange() { boolean debugViewAttributes = mCoreSettings.getInt(Settings.Global.DEBUG_VIEW_ATTRIBUTES, 0) != 0; if (debugViewAttributes != View.mDebugViewAttributes) { View.mDebugViewAttributes = debugViewAttributes; // 由于发生改变, 请求所有的activities重启启动 for (Map.Entry<IBinder, ActivityClientRecord> entry : mActivities.entrySet()) { requestRelaunchActivity(entry.getKey(), null, null, 0, false, null, null, false); } } }
3.13 H.BIND_APPLICATION
[-> ActivityThread.java ::H]
当主线程收到H.BIND_APPLICATION,则调用handleBindApplication
private void handleBindApplication(AppBindData data) { mBoundApplication = data; mConfiguration = new Configuration(data.config); mCompatConfiguration = new Configuration(data.config); ... //设置进程名, 也就是说进程名是在进程真正创建以后的BIND_APPLICATION过程中才取名 Process.setArgV0(data.processName); android.ddm.DdmHandleAppName.setAppName(data.processName, UserHandle.myUserId()); if (data.persistent) { //低内存设备, persistent进程不采用硬件加速绘制,以节省内存使用量 if (!ActivityManager.isHighEndGfx()) { HardwareRenderer.disable(false); } } //重置时区 TimeZone.setDefault(null); Locale.setDefault(data.config.locale); //更新系统配置 mResourcesManager.applyConfigurationToResourcesLocked(data.config, data.compatInfo); mCurDefaultDisplayDpi = data.config.densityDpi; applyCompatConfiguration(mCurDefaultDisplayDpi); data.info = getPackageInfoNoCheck(data.appInfo, data.compatInfo); ... // 创建ContextImpl上下文 final ContextImpl appContext = ContextImpl.createAppContext(this, data.info); if (!Process.isIsolated()) { final File cacheDir = appContext.getCacheDir(); if (cacheDir != null) { System.setProperty("java.io.tmpdir", cacheDir.getAbsolutePath()); } //用于存储产生/编译的图形代码 final File codeCacheDir = appContext.getCodeCacheDir(); if (codeCacheDir != null) { setupGraphicsSupport(data.info, codeCacheDir); } } final boolean is24Hr = "24".equals(mCoreSettings.getString(Settings.System.TIME_12_24)); DateFormat.set24HourTimePref(is24Hr); View.mDebugViewAttributes = mCoreSettings.getInt(Settings.Global.DEBUG_VIEW_ATTRIBUTES, 0) != 0; ... //当处于调试模式,则运行应用生成systrace信息 boolean appTracingAllowed = (data.appInfo.flags&ApplicationInfo.FLAG_DEBUGGABLE) != 0; Trace.setAppTracingAllowed(appTracingAllowed); //初始化 默认的http代理 IBinder b = ServiceManager.getService(Context.CONNECTIVITY_SERVICE); if (b != null) { IConnectivityManager service = IConnectivityManager.Stub.asInterface(b); final ProxyInfo proxyInfo = service.getProxyForNetwork(null); Proxy.setHttpProxySystemProperty(proxyInfo); } if (data.instrumentationName != null) { InstrumentationInfo ii = null; ii = appContext.getPackageManager().getInstrumentationInfo(data.instrumentationName, 0); mInstrumentationPackageName = ii.packageName; mInstrumentationAppDir = ii.sourceDir; mInstrumentationSplitAppDirs = ii.splitSourceDirs; mInstrumentationLibDir = ii.nativeLibraryDir; mInstrumentedAppDir = data.info.getAppDir(); mInstrumentedSplitAppDirs = data.info.getSplitAppDirs(); mInstrumentedLibDir = data.info.getLibDir(); ApplicationInfo instrApp = new ApplicationInfo(); instrApp.packageName = ii.packageName; instrApp.sourceDir = ii.sourceDir; instrApp.publicSourceDir = ii.publicSourceDir; instrApp.splitSourceDirs = ii.splitSourceDirs; instrApp.splitPublicSourceDirs = ii.splitPublicSourceDirs; instrApp.dataDir = ii.dataDir; instrApp.nativeLibraryDir = ii.nativeLibraryDir; LoadedApk pi = getPackageInfo(instrApp, data.compatInfo, appContext.getClassLoader(), false, true, false); ContextImpl instrContext = ContextImpl.createAppContext(this, pi); java.lang.ClassLoader cl = instrContext.getClassLoader(); mInstrumentation = (Instrumentation)cl.loadClass(data.instrumentationName.getClassName()).newInstance(); mInstrumentation.init(this, instrContext, appContext, new ComponentName(ii.packageName, ii.name), data.instrumentationWatcher, data.instrumentationUiAutomationConnection); ... } else { mInstrumentation = new Instrumentation(); } //FLAG_LARGE_HEAP则清除内存增长上限 if ((data.appInfo.flags&ApplicationInfo.FLAG_LARGE_HEAP) != 0) { dalvik.system.VMRuntime.getRuntime().clearGrowthLimit(); } else { dalvik.system.VMRuntime.getRuntime().clampGrowthLimit(); } try { // 通过反射,创建目标应用Application对象,即在AndroidManifest.xml文件定义的应用名 Application app = data.info.makeApplication(data.restrictedBackupMode, null); mInitialApplication = app; if (!data.restrictedBackupMode) { List<ProviderInfo> providers = data.providers; if (providers != null) { installContentProviders(app, providers); mH.sendEmptyMessageDelayed(H.ENABLE_JIT, 10*1000); } } mInstrumentation.onCreate(data.instrumentationArgs); //调用Application.onCreate()回调方法. mInstrumentation.callApplicationOnCreate(app); } finally { StrictMode.setThreadPolicy(savedPolicy); } }
小节: 到此进程启动的全过程基本介绍完, 那接下来程序该往哪执行呢, 那就是要继续看[见流程3.8] AMS.attachApplicationLocked.从[3.9 ~ 3.13] 只是介绍了bindApplication过程, 该方法之后便是组件启动相关的内容,本文主要将进程相关内容, 组件的内容后续还会再进一步介绍.
四. 总结
本文首先介绍AMS的4个同名不同参数的方法startProcessLocked; 紧接着讲述了四大组件与进程的关系, Activity, Service, ContentProvider, BroadcastReceiver这四大组件,在启动的过程,当其所承载的进程不存在时需要先创建进程. 再然后进入重点以startProcessLocked以引线一路讲解整个过程所遇到的核心方法. 在整个过程中有新创建的进程与system_server进程之间的交互过程 是通过binder进行通信的, 这里有两条binder通道分别为AMP/AMN 和 ATP/ATN.
上图便是一次完整的进程创建过程,app的任何组件需要有一个承载其运行的容器,那就是进程, 那么进程的创建过程都是由系统进程system_server通过socket向zygote进程来请求fork()新进程, 当创建出来的app process与system_server进程之间的通信便是通过binder IPC机制.