继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

画出卷积神经网络结构图

萧十郎
关注TA
已关注
手记 344
粉丝 36
获赞 166
  • 使用Keras框架(后端可选tensorflow或者theano),可以画出卷积神经网络的结构图帮助我们理解或确认自己创立的模型。

  • 问题的关键在于使用from keras.utils.visualize_util import plot中的plot函数。
    但是直接使用会提示缺少pydot
    首先安装sudo pip3 install pydot以及sudo apt-get install graphviz(在Ubuntu上)。

  • 但是会提示一个和新版keras的兼容问题。于是我们需要安装sudo pip3 install pydot-ng来解决这个问题。

  • 现在就可以画出结构图了:


使用样例一

from keras.layers import Input, Convolution2D, Flatten, Dense, Activationfrom keras.models import Sequentialfrom keras.optimizers import SGD , Adamfrom keras.initializations import normalfrom keras.utils.visualize_util import plot# apply a 3x3 convolution with 64 output filters on a 256x256 image:model = Sequential()
model.add(Convolution2D(64, 3, 3, border_mode='same', dim_ordering='th',input_shape=(3, 256, 256)))# now model.output_shape == (None, 64, 256, 256)# add a 3x3 convolution on top, with 32 output filters:model.add(Convolution2D(32, 3, 3, border_mode='same', dim_ordering='th'))# now model.output_shape == (None, 32, 256, 256)adam = Adam(lr=1e-6)
model.compile(loss='mse',optimizer=adam)
print("We finish building the model")

plot(model, to_file='model1.png', show_shapes=True)

https://img.mukewang.com/5d2fd62a00012b1905520318.jpg

样例一

使用样例二

from keras.layers import Input, Convolution2D, MaxPooling2D, Flatten, Densefrom keras.models import Modelfrom keras.utils.visualize_util import plot

inputs = Input(shape=(229, 229, 3))

x = Convolution2D(32, 3, 3, subsample=(2, 2), border_mode='valid', dim_ordering='tf')(inputs)

x = Flatten()(x)
loss = Dense(32, activation='relu', name='loss')(x)
model = Model(input=inputs, output=loss)
model.compile(optimizer='rmsprop', loss='binary_crossentropy')# visualize model layout with pydot_ngplot(model, to_file='model2.png', show_shapes=True)

https://img2.mukewang.com/5d2fd6300001033206010414.jpg

样例二

使用样例三

from keras.layers import Input, Convolution2D, Flatten, Dense, Activationfrom keras.models import Sequentialfrom keras.optimizers import SGD , Adamfrom keras.initializations import normalfrom keras.utils.visualize_util import plot

print("Now we build the model")
model = Sequential()
img_channels = 4 #output dimenson nothing with channelsimg_rows = 80img_cols = 80model.add(Convolution2D(32, 8, 8, subsample=(4,4),init=lambda shape, name: normal(shape, scale=0.01, name=name), border_mode='same', dim_ordering='th',input_shape=(img_channels,img_rows,img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(64, 4, 4, subsample=(2,2),init=lambda shape, name: normal(shape, scale=0.01, name=name), border_mode='same', dim_ordering='th'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, subsample=(1,1),init=lambda shape, name: normal(shape, scale=0.01, name=name), border_mode='same', dim_ordering='th'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
model.add(Activation('relu'))
model.add(Dense(2,init=lambda shape, name: normal(shape, scale=0.01, name=name)))

adam = Adam(lr=1e-6)
model.compile(loss='mse',optimizer=adam)
print("We finish building the model")

plot(model, to_file='model3.png', show_shapes=True)

https://img1.mukewang.com/5d2fd63d0001419c05191180.jpg

model3



作者:treelake
链接:https://www.jianshu.com/p/56a05b5e4f20


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP