继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Java和Android的LRU缓存及实现原理

泛舟湖上清波郎朗
关注TA
已关注
手记 281
粉丝 32
获赞 226

原文链接

一、概述

Android提供了LRUCache类,可以方便的使用它来实现LRU算法的缓存。Java提供了LinkedHashMap,可以用该类很方便的实现LRU算法,Java的LRULinkedHashMap就是直接继承了LinkedHashMap,进行了极少的改动后就可以实现LRU算法。

二、Java的LRU算法

Java的LRU算法的基础是LinkedHashMap,LinkedHashMap继承了HashMap,并且在HashMap的基础上进行了一定的改动,以实现LRU算法。

1、HashMap

首先需要说明的是,HashMap将每一个节点信息存储在Entry<K,V>结构中。Entry<K,V>中存储了节点对应的key、value、hash信息,同时存储了当前节点的下一个节点的引用。因此Entry<K,V>是一个单向链表。HashMap的存储结构是一个数组加单向链表的形式。每一个key对应的hashCode,在HashMap的数组中都可以找到一个位置;而如果多个key对应了相同的hashCode,那么他们在数组中对应在相同的位置上,这时,HashMap将把对应的信息放到Entry<K,V>中,并使用链表连接这些Entry<K,V>。

    static class Entry<K,V> implements Map.Entry<K,V> {        final K key;
        V value;
        Entry<K,V> next;        int hash;        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }        public final K getKey() {            return key;
        }        public final V getValue() {            return value;
        }        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;            return oldValue;
        }        public final boolean equals(Object o) {            if (!(o instanceof Map.Entry))                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();                if (v1 == v2 || (v1 != null && v1.equals(v2)))                    return true;
            }            return false;
        }        public final int hashCode() {            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
        }        public final String toString() {            return getKey() + "=" + getValue();
        }        /**
         * This method is invoked whenever the value in an entry is
         * overwritten by an invocation of put(k,v) for a key k that's already
         * in the HashMap.
         */
        void recordAccess(HashMap<K,V> m) {
        }        /**
         * This method is invoked whenever the entry is
         * removed from the table.
         */
        void recordRemoval(HashMap<K,V> m) {
        }
    }

下面贴一下HashMap的put方法的代码,并进行分析

  public V put(K key, V value) {        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }        if (key == null)            return putForNullKey(value);

     //以上信息不关心,下面是正常的插入逻辑。     //首先计算hashCode
        int hash = hash(key);
     //通过计算得到的hashCode,计算出hashCode在数组中的位置
        int i = indexFor(hash, table.length);

     //for循环,找到在HashMap中是否存在一个节点,对应的key与传入的key完全一致。如果存在,说明用户想要替换该key对应的value值,因此直接替换value即可返回。
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);                return oldValue;
            }
        }

     //逻辑执行到此处,说明HashMap中不存在完全一致的kye.调用addEntry,新建一个节点保存key、value信息,并增加到HashMap中
        modCount++;
        addEntry(hash, key, value, i);        return null;
    }

在上面的代码中增加了一些注释,可以对整体有一个了解。下面具体对一些值得分析的点进行说明。

<1> int i = indexFor(hash, table.length);

可以看一下源码:

  static int indexFor(int h, int length) {        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
        return h & (length-1);
    }

为什么获得的hashCode(h)要和(length-1)进行按位与运算?这是为了保证去除掉h的高位信息。如果数组大小为8(1000),而计算出的h的值为10(1010),如果直接获取数组的index为10的数据,肯定会抛出数组超出界限异常。所以使用按位与(0111&1010),成功清除掉高位信息,得到2(0010),表示对应数组中index为2的数据。效果与取余相同,但是位运算的效率明显更高。

但是这样有一个问题,如果length为9,获取得length-1信息为8(1000),这样进行位运算,不但不能清除高位数据,得到的结果肯定不对。所以数组的大小一定有什么特别的地方。通过查看源码,可以发现,HashMap无时无刻不在保证对应的数组个数为2的n次方。

首先在put的时候,调用inflateTable方法。重点在于roundUpToPowerOf2方法,虽然它的内容包含大量的位相关的运算和处理,没有看的很明白,但是注释已经明确了,会保证数组的个数为2的n次方。

private void inflateTable(int toSize) {// Find a power of 2 >= toSizeint capacity = roundUpToPowerOf2(toSize);

threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}

其次,在addEntry等其他位置,也会使用(2 * table.length)、table.length << 1等方式,保证数组的个数为2的n次方。

<2> for (Entry<K,V> e = table[i]; e != null; e = e.next)

因为HashMap使用的是数组加链表的形式,所以通过hashCode获取到在数组中的位置后,得到的不是一个Entry<K,V>,而是一个Entry<K,V>的链表,一定要循环链表,获取key对应的value。

<3> addEntry(hash, key, value, i);

先判断数组个数是否超出阈值,如果超过,需要增加数组个数。然后会新建一个Entry,并加到数组中。

    /**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     *
     * Subclass overrides this to alter the behavior of put method.
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }    /**
     * Like addEntry except that this version is used when creating entries
     * as part of Map construction or "pseudo-construction" (cloning,
     * deserialization).  This version needn't worry about resizing the table.
     *
     * Subclass overrides this to alter the behavior of HashMap(Map),
     * clone, and readObject.
     */
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

2、LinkedHashMap

LinkedHashMap在HashMap的基础上,进行了修改。首先将Entry由单向链表改成双向链表。增加了before和after两个队Entry的引用。

    private static class Entry<K,V> extends HashMap.Entry<K,V> {        // These fields comprise the doubly linked list used for iteration.
        Entry<K,V> before, after;

        Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {            super(hash, key, value, next);
        }        /**
         * Removes this entry from the linked list.
         */
        private void remove() {
            before.after = after;
            after.before = before;
        }        /**
         * Inserts this entry before the specified existing entry in the list.
         */
        private void addBefore(Entry<K,V> existingEntry) {
            after  = existingEntry;
            before = existingEntry.before;
            before.after = this;
            after.before = this;
        }        /**
         * This method is invoked by the superclass whenever the value
         * of a pre-existing entry is read by Map.get or modified by Map.set.
         * If the enclosing Map is access-ordered, it moves the entry
         * to the end of the list; otherwise, it does nothing.
         */
        void recordAccess(HashMap<K,V> m) {
            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;            if (lm.accessOrder) {
                lm.modCount++;
                remove();
                addBefore(lm.header);
            }
        }        void recordRemoval(HashMap<K,V> m) {
            remove();
        }
    }

同时,LinkedHashMap提供了一个对Entry的引用header(private transient Entry<K,V> header)。header的作用就是永远只是HashMap中所有成员的头(header.after)和尾(header.before)。这样把HashMap本身的数组加链表的格式进行了修改。在LinkedHashMap中,即保留了HashMap的数组加链表的数据保存格式,同时增加了一套header作为开始标记的双向链表(我们暂且称之为header的双向链表)。LinkedHashMap就是通过header的双向链表来实现LRU算法的。header.after永远指向最近最不常使用的那个节点,删除的话,就是删除这个header.after对应的节点。相对的,header.before指向的就是刚刚使用过的那个节点。

LinkedHashMap并没有提供put方法,但是LinkedHashMap重写了addEntry和createEntry方法,如下:

    /**
     * This override alters behavior of superclass put method. It causes newly
     * allocated entry to get inserted at the end of the linked list and
     * removes the eldest entry if appropriate.
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        super.addEntry(hash, key, value, bucketIndex);        // Remove eldest entry if instructed
        Entry<K,V> eldest = header.after;        if (removeEldestEntry(eldest)) {
            removeEntryForKey(eldest.key);
        }
    }    /**
     * This override differs from addEntry in that it doesn't resize the
     * table or remove the eldest entry.
     */
    void createEntry(int hash, K key, V value, int bucketIndex) {
        HashMap.Entry<K,V> old = table[bucketIndex];
        Entry<K,V> e = new Entry<>(hash, key, value, old);
        table[bucketIndex] = e;
        e.addBefore(header);
        size++;
    }

HashMap的put方法,调用了addEntry方法;HashMap的addEntry方法又调用了createEntry方法。因此可以把上面的两个方法和HashMap中的内容放到一起,方便分析,形成如下方法:

  void addEntry(int hash, K key, V value, int bucketIndex) {        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        HashMap.Entry<K,V> old = table[bucketIndex];
        Entry<K,V> e = new Entry<>(hash, key, value, old);
        table[bucketIndex] = e;
        e.addBefore(header);
        size++;        // Remove eldest entry if instructed
        Entry<K,V> eldest = header.after;        if (removeEldestEntry(eldest)) {
            removeEntryForKey(eldest.key);
        }
    }

同样,先判断是否超出阈值,超出则增加数组的个数。然后创建Entry对象,并加入到HashMap对应的数组和链表中。与HashMap不同的是LinkedHashMap增加了e.addBefore(header);和removeEntryForKey(eldest.key);这样两个操作。

首先分析一下e.addBefore(header)。其中e是LinkedHashMap.Entry对象,addBefore代码如下,作用就是讲header与当前对象相关联,使当前对象增加到header的双向链表的尾部(header.before):

    private void addBefore(Entry<K,V> existingEntry) {
            after  = existingEntry;
            before = existingEntry.before;
            before.after = this;
            after.before = this;
        }

其次是另一个重点,代码如下:

        // Remove eldest entry if instructed
        Entry<K,V> eldest = header.after;        if (removeEldestEntry(eldest)) {
            removeEntryForKey(eldest.key);
        }

其中,removeEldestEntry判断是否需要删除最近最不常使用的那个节点。LinkedHashMap中的removeEldestEntry(eldest)方法永远返回false,如果我们要实现LRU算法,就需要重写这个方法,判断在什么情况下,删除最近最不常使用的节点。removeEntryForKey的作用就是将key对应的节点在HashMap的数组加链表结构中删除,源码如下:

  final Entry<K,V> removeEntryForKey(Object key) {        if (size == 0) {            return null;
        }        int hash = (key == null) ? 0 : hash(key);        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;        while (e != null) {
            Entry<K,V> next = e.next;
            Object k;            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;                if (prev == e)
                    table[i] = next;                else
                    prev.next = next;
                e.recordRemoval(this);                return e;
            }
            prev = e;
            e = next;
        }        return e;
    }

removeEntryForKey是HashMap的方法,对LinkedHashMap中header的双向链表无能为力,而LinkedHashMap又没有重写这个方法,那header的双向链表要如何处理呢。

仔细看一下代码,可以看到在成功删除了HashMap中的节点后,调用了e.recordRemoval(this);方法。这个方法在HashMap中为空,LinkedHashMap的Entry则实现了这个方法。其中remove()方法中的两行代码为双向链表中删除当前节点的标准代码,不解释。

        /**
         * Removes this entry from the linked list.
         */
        private void remove() {
            before.after = after;
            after.before = before;
        }void recordRemoval(HashMap<K,V> m) {
            remove();
        }

以上,LinkedHashMap增加节点的代码分析完毕,可以看到完美的将新增的节点放在了header双向链表的末尾。

但是,这样显然是先进先出的算法,而不是最近最不常使用算法。需要在get的时候,更新header双向链表,把刚刚get的节点放到header双向链表的末尾。我们来看看get的源码:

  public V get(Object key) {
        Entry<K,V> e = (Entry<K,V>)getEntry(key);        if (e == null)            return null;
        e.recordAccess(this);        return e.value;
    }

代码很短,第一行的getEntry调用的是HashMap的getEntry方法,不需要解释。真正处理header双向链表的代码是e.recordAccess(this)。看一下代码:

     /**
         * Removes this entry from the linked list.
         */
        private void remove() {
            before.after = after;
            after.before = before;
        }        /**
         * Inserts this entry before the specified existing entry in the list.
         */
        private void addBefore(Entry<K,V> existingEntry) {
            after  = existingEntry;
            before = existingEntry.before;
            before.after = this;
            after.before = this;
        }        /**
         * This method is invoked by the superclass whenever the value
         * of a pre-existing entry is read by Map.get or modified by Map.set.
         * If the enclosing Map is access-ordered, it moves the entry
         * to the end of the list; otherwise, it does nothing.
         */
        void recordAccess(HashMap<K,V> m) {
            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;            if (lm.accessOrder) {
                lm.modCount++;
                remove();
                addBefore(lm.header);
            }
        }

首先在header双向链表中删除当前节点,再将当前节点添加到header双向链表的末尾。当然,在调用LinkedHashMap的时候,需要将accessOrder设置为true,否则就是FIFO算法。

三、Android的LRU算法

Android同样提供了HashMap和LinkedHashMap,而且总体思路有些类似,但是实现的细节明显不同。而且Android提供的LruCache虽然使用了LinkedHashMap,但是实现的思路并不一样。Java需要重写removeEldestEntry来判断是否删除节点;而Android需要重写LruCache的sizeOf,返回当前节点的大小,Android会根据这个大小判断是否超出了限制,进行调用trimToSize方法清除多余的节点。

Android的sizeOf方法默认返回1,默认的方式是判断HashMap中的数据个数是否超出了设置的阈值。也可以重写sizeOf方法,返回当前节点的大小。Android的safeSizeOf会调用sizeOf方法,其他判断阈值的方法会调用safeSizeOf方法,进行加减操作并判断阈值。进而判断是否需要清除节点。

Java的removeEldestEntry方法,也可以达到同样的效果。Java需要使用者自己提供整个判断的过程,两者思路还是有些区别的。

sizeOf,safeSizeOf不需要说明,而put和get方法,虽然和Java的实现方式不完全一样,但是思路是相同的,也不需要分析。在LruCache中put方法的最后,会调用trimToSize方法,这个方法用于清除超出的节点。它的代码如下:

  public void trimToSize(int maxSize)  {    while (true)
    {
      Object key;
      Object value;
      synchronized (this) {        if ((this.size < 0) || ((this.map.isEmpty()) && (this.size != 0))) {          throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!");
        }
      if (size <= maxSize) {
        break;
      }

        Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();

        key = toEvict.getKey();        value = toEvict.getValue();        this.map.remove(key);        this.size -= safeSizeOf(key, value);        this.evictionCount += 1;
      }

      entryRemoved(true, key, value, null);
    }
  }

重点需要说明的是Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行代码。它前面的代码判断是否需要删除最近最不常使用的节点,后面的代码用于删除具体的节点。这行代码用于获取最近最不常使用的节点。

首先需要说明的问题是,Android的LinkedHashMap和Java的LinkedHashMap在思路上一样,也是使用header保存双向链表。在put和get的时候,会更新对应的节点,保存header.after指向最久没有使用的节点;header.before用于指向刚刚使用过的节点。所以Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行最终肯定是获取header.after节点。下面逐步分析代码,就可以看到是如何实现的了。

首先,map.entrySet(),HashMap定义了这个方法,LinkedHashMap没有重写这个方法。因此调用的是HashMap对应的方法:

  public Set<Entry<K, V>> entrySet() {        Set<Entry<K, V>> es = entrySet;        return (es != null) ? es : (entrySet = new EntrySet());
    }

上面代码不需要细说,new一个EntrySet类的实例。而EntrySet也是在HashMap中定义,LinkedHashMap中没有。

  private final class EntrySet extends AbstractSet<Entry<K, V>> {        public Iterator<Entry<K, V>> iterator() {            return newEntryIterator();
        }        public boolean contains(Object o) {            if (!(o instanceof Entry))                return false;
            Entry<?, ?> e = (Entry<?, ?>) o;            return containsMapping(e.getKey(), e.getValue());
        }        public boolean remove(Object o) {            if (!(o instanceof Entry))                return false;
            Entry<?, ?> e = (Entry<?, ?>)o;            return removeMapping(e.getKey(), e.getValue());
        }        public int size() {            return size;
        }        public boolean isEmpty() {            return size == 0;
        }        public void clear() {
            HashMap.this.clear();
        }
    }

  Iterator<Entry<K, V>> newEntryIterator() { return new EntryIterator(); }

代码中很明显的可以看出,Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(),就是要调用newEntryIterator().next(),就是调用(new EntryIterator()).next()。而EntryIterator类在LinkedHashMap中是有定义的。

  private final class EntryIterator
            extends LinkedHashIterator<Map.Entry<K, V>> {        public final Map.Entry<K, V> next() { return nextEntry(); }
    }    private abstract class LinkedHashIterator<T> implements Iterator<T> {
        LinkedEntry<K, V> next = header.nxt;
        LinkedEntry<K, V> lastReturned = null;        int expectedModCount = modCount;        public final boolean hasNext() {            return next != header;
        }        final LinkedEntry<K, V> nextEntry() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();
            LinkedEntry<K, V> e = next;            if (e == header)                throw new NoSuchElementException();
            next = e.nxt;            return lastReturned = e;
        }        public final void remove() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            if (lastReturned == null)                throw new IllegalStateException();
            LinkedHashMap.this.remove(lastReturned.key);
            lastReturned = null;
            expectedModCount = modCount;
        }
    }

现在可以得到结论,trimToSize中的那行代码得到的就是header.next对应的节点,也就是最近最不常使用的那个节点。


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP