继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

【python】实战:大批量数据的处理和拟合

UnderTurrets
关注TA
已关注
手记 48
粉丝 1
获赞 2

@TOC


完整项目源码

任务介绍

  • 本题为2006年高教社杯全国大学生数学建模竞赛B题:

艾滋病是当前人类社会最严重的瘟疫之一,从1981年发现以来的20多年间,它已经吞噬了近3000万人的生命。

艾滋病的医学全名为“获得性免疫缺损综合症”,英文简称AIDS,它是由艾滋病毒(医学全名为“人体免疫缺损病毒”, 英文简称HIV)引起的。这种病毒破坏人的免疫系统,使人体丧失抵抗各种疾病的能力,从而严重危害人的生命。人类免疫系统的CD4细胞在抵御HIV的入侵中起着重要作用,当CD4被HIV感染而裂解时,其数量会急剧减少,HIV将迅速增加,导致AIDS发作。

艾滋病治疗的目的,是尽量减少人体内HIV的数量,同时产生更多的CD4,至少要有效地降低CD4减少的速度,以提高人体免疫能力。

迄今为止人类还没有找到能根治AIDS的疗法,目前的一些AIDS疗法不仅对人体有副作用,而且成本也很高。许多国家和医疗组织都在积极试验、寻找更好的AIDS疗法。

现在得到了美国艾滋病医疗试验机构ACTG公布的两组数据。 ACTG320(见附件1)是同时服用zidovudine(齐多夫定),lamivudine(拉美夫定)和indinavir(茚地那韦)3种药物的300多名病人每隔几周测试的CD4和HIV的浓度(每毫升血液里的数量)。193A(见附件2)是将1300多名病人随机地分为4组,每组按下述4种疗法中的一种服药,大约每隔8周测试的CD4浓度(这组数据缺HIV浓度,它的测试成本很高)。4种疗法的日用药分别为:600mg zidovudine或400mg didanosine(去羟基苷),这两种药按月轮换使用;600 mg zidovudine加2.25 mg zalcitabine(扎西他滨);600 mg zidovudine加400 mg didanosine;600 mg zidovudine加400 mg didanosine,再加400 mg nevirapine(奈韦拉平)。

请你完成以下问题:

(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间(继续治疗指在测试终止后继续服药,如果认为继续服药效果不好,则可选择提前终止治疗)。

(2)利用附件2的数据,评价4种疗法的优劣(仅以CD4为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间。

(3)艾滋病药品的主要供给商对不发达国家提供的药品价格如下:600mg zidovudine 1.60美元,400mg didanosine 0.85美元,2.25 mg zalcitabine 1.85美元,400 mg nevirapine 1.20美元。如果病人需要考虑4种疗法的费用,对(2)中的评价和预测(或者提前终止)有什么改变。

第一小问

读取数据

打开附件1:(以下只展示了极小部分的数据)


附件1 ACTG320数据

  

同时服用3种药物(zidovudine, lamivudine,indinavir)的300多名病人每隔几周测试的CD4和HIV的浓度。

  

第1列是病人编号,第2列是测试CD4的时刻(周),第3列是测得的CD4(乘以0.2个/ul),第4列是测试HIV的时刻(周),第5列是测得的HIV(单位不详)。

  

PtID CD4Date CD4Count RNADate VLoad

23424 0 178 0 5.5

23424 4 228 4 3.9

23424 8 126 8 4.7

23424 25 171 25 4

23424 40 99 40 5

23425 0 14 0 5.3

可以看到数据排列的方式非常整齐,这使得我们可以快速按行读取数据。首先,删掉文本的非数据部分:(以下只展示了极小部分的数据)


23496 0 57 0 5.3

23496 4 202 4 3.9

23496 9 2.6

23496 29 236 29 2.7

23496 39 260 39 3.5

23516 0 14 0 5.6

23516 4 27 4 3.4

23516 8 72 8 2.4

23516 24 0

23516 42 237 42 2.5

23517 0 74

23517 5 92

23517 9 157

23517 26 181

23518 0 85 0 4.8

23518 3 60 3 2.3

23518 7 98 7 3.9

23518 24 54 24 3.7

在按行读取之前,还有一个比较关键的问题:有的数据是缺失的,且只有编号23496缺失第2、3列数据。因此,制定以下读取策略:


'''

Created by Han Xu

email:underturrets@163.com

'''

total=[]

f=open("附件1纯数据.txt",encoding="utf-8",mode="r")

lastID=""

currentID=""

for line in f:

  

lineData=line.split()

currentID = float(lineData[0])

  

CD4Date = -1

CD4Count = -1

RNADate = -1

VLoad = -1

  

if (len(lineData) == 5):

CD4Date = float(lineData[1])

CD4Count = float(lineData[2])

RNADate = float(lineData[3])

VLoad = float(lineData[4])

  

else:

if (lineData[0] == "23496"):

RNADate = float(lineData[1])

VLoad = float(lineData[2])

  

else:

CD4Date = float(lineData[1])

CD4Count = float(lineData[2])

  

new_data={"CD4Date":CD4Date,"CD4Count":CD4Count,"RNADate":RNADate,"VLoad":VLoad}

  

if(currentID!=lastID):

individual = {"id": None, "data": []}

individual["id"] = currentID

individual["data"].append(new_data)

total.append(individual)

  

else:

total[len(total)-1]["data"].append(new_data)

  

lastID = currentID

在以上部分中,建立了一个名为total的列表,列表中每个元素是这样的:


print(total[0])


{'id':  23424.0,  'data': [{'CD4Date':  0.0,  'CD4Count':  178.0,  'RNADate':  0.0,  'VLoad':  5.5},  {'CD4Date':  4.0,  'CD4Count':  228.0,  'RNADate':  4.0,  'VLoad':  3.9},  {'CD4Date':  8.0,  'CD4Count':  126.0,  'RNADate':  8.0,  'VLoad':  4.7},  {'CD4Date':  25.0,  'CD4Count':  171.0,  'RNADate':  25.0,  'VLoad':  4.0},  {'CD4Date':  40.0,  'CD4Count':  99.0,  'RNADate':  40.0,  'VLoad':  5.0}]}

这样,我们就完成了附件1的数据的读取

数据补完

在所给数据中,有不少的数据是缺失的,为了尽可能地利用数据,利用拉格朗日线性插值法对空缺数据进行补充。方法如下:

$$

y=y_{k} \times \frac{x-x_{k+1}}{x_{k}-x_{k+1}}+y_{k+1} \times \frac{x-x_{k}}{x_{k+1}-x_{k}}

$$


23516 8 72 8 2.4

23516 24 0

23516 42 237 42 2.5

举例而言,在如上的数据中,要补全编号23516个体的第3、4列数据,则:先指定x=24

$$

y=?,y_{k}=2.4,y_{k+1}=2.5 \

x_{k}=8,x_{k+1}=42

$$

可以轻松计算出预测的y值。

详细的代码在源码的repairData.py中。

模型一的建立与分析

概述

首先,根据文本中的大量数据,拟定针对CD4浓度和VLoad浓度分别拟合出关于时间t的函数,此为总体方针。CD4浓度越大越好,VLoad浓度越小越好。为了统筹两条函数曲线,可以对VLoad浓度进行取负,然后将二者相加。当然,必须要先将数据标准化才可以相加。

标准化

在所给的数据文本中,CD4Date数据(第三列)的极差非常大,而且VLoad数据的单位也不确定。因此,首先要对数据进行标准化处理。这里采用Z-score 标准化:

对于样本 X 中的每个特征:

$$

X_{normalized} = \frac{(X - \mu)}{\sigma}

$$

其中,μ 是该特征的平均值,σ 是该特征的标准差。

标准化的代码在源码的dataProcessing.py中。

处理相同时刻的数据

读取完数据后,注意到,在文本中,有很多的数据具有相同的时刻t,如下:


23424 0 178 0 5.5

23425 0 14 0 5.3

23426 0 101 0 4.5

23427 0 10 0 5.3

拟针对具有相同时刻t的数据组 (x,y1),(x,y2),(x,y3),(x,y4),求出其平均值 (x,yaverage),然后进行拟合。

此部分的代码在源码的dataProcessing.py中。

模型二的建立与分析

在模型一中,拟合方法是,直接对具有相同时刻t的数据组 (x,y1),(x,y2),(x,y3),(x,y4),求出其平均值 (x,yaverage)。然而,在拟合过程中,这些具有相同时刻t的数据组,和孤立的数据,起到同样的拟合作用。也就是说,它们的重要程度是相同的。但是,具有相同时刻t的数据组显然要比孤立的数据要更加精确。因此,模型一的拟合是不合理的。

出于以上考虑,现使用一种创新性的数据处理办法,使得在拟合时,体现出具有相同时刻t的数据组的重要性,方法如下:

假如有如下数据组:(x,y1),(x,y2),(x,y3),(x,y4),它们的x数据是相同的。首先,先求出其y值的均值,(x,yaverage)。然后,尝试增加其数据密度,要求其在拟合时起到更加显著的作用。原数据组样本容量为4,然后确定x的数量级,以小于n个x的数量级为基准,对数据组中每个坐标的x添加偏置offset,使得数据组中每个坐标的x都各不相同但差别极小可以忽略不计。

举例而言,假如有数据组(1,1),(1,2),(1,3),(1,4),按照以上方法,可以获得数据组(0.9998,2.5),(0.9999,2.5),(1.0001,2.5),(1.0002,2.5)

这种方法的代码在源码的dataProcessing.py中。

接下来同样进行拟合。然后把拟合好的曲线进行融合,结果如下:

此部分代码在源码的combine2func.py中

第二小问

数据分布

首先,附件2文本中的数据是这样的:(以下只展示了极小部分的数据)


附件2 193A数据

  

1300多名病人按照4种疗法服药大约每隔8周测试的CD4浓度。

  

第1列是病人编号,第2列是4种疗法的代码:

1 = 600mg zidovudine 与400mg didanosine按月轮换使用;

2 = 600mg zidovudine 加2.25mg zalcitabine;

3 = 600mg zidovudine 加400mg didanosine;

4 = 600mg zidovudine 加400mg didanosine 加400mg nevirapine。

  

第3列是病人年龄,第4列是测试CD4的时刻(周),第5列是测得的CD4,取值log(CD4+1).

  
  

ID 疗法 年龄 时间 Log(CD4 count+1)

1 2 36.4271 0 3.1355

1 2 36.4271 7.5714 3.0445

1 2 36.4271 15.5714 2.7726

1 2 36.4271 23.5714 2.8332

1 2 36.4271 32.5714 3.2189

1 2 36.4271 40 3.0445

2 4 47.8467 0 3.0681

2 4 47.8467 8 3.8918

2 4 47.8467 16 3.9703

2 4 47.8467 23 3.6109

2 4 47.8467 30.7143 3.3322

2 4 47.8467 39 3.0910

3 1 60.2875 0 3.7377

4 3 36.5969 0 4.1190

4 3 36.5969 7.1429 4.1109

4 3 36.5969 16.1429 4.7095

4 3 36.5969 32.4286 2.8332

5 1 35.948 0 3.5835

5 1 35.948 8 3.4340

5 1 35.948 16 3.4340

5 1 35.948 24 3.7136

5 1 35.948 32 3.0445

5 1 35.948 40 2.3979

由于病人的年龄差别较大,且不同年龄的病人的抵抗力差别也比较大,因此,将病人按照年龄划分为4个样本组:14~25岁、25~35岁、36~45岁、45岁以上。

此外,可以发现CD4浓度的测试时间集中在以下几个时间段:第0周、第7~9周、第15~17周、第23~25周、第31~33周、第38周以上。因此,基于测量时刻,对每个样本组划分出若干个数据组。

读取数据的代码在源码的readDataTxt2.py中。

数据处理

首先,针对一个数据组 (x1,y1),(x2,y2),(x3,y3),(x4,y4),求出其平均值 (xaverage,yaverage),由于针对时间t分成了6个数据组,因此会得到6个数据点。

接下来,为了描绘CD4浓度的变化,对这六个点,相邻的两点y值做减法,最终得到5个点,然后用这5个点进行拟合。下面展示一个年龄组的拟合结果:

此部分的代码在源码的Task2_fit.py中。

第三小问

计算疗法的得分

在第二小问中,我们拟合出了CD4浓度变化量的函数曲线。对于某种疗法的某个病人来说,CD4浓度变化量大于0且越大,表明CD4增加得越多,说明该疗法越有效。而当CD4浓度变化量小于或等于0且越小时,说明该疗法对于病人是没有效果甚至是有副作用的,因此对于疗法失效,且另作统计为疗法的失效率,记为Q。我们对得到的的数据进行统计:

CD4浓度变化量数据组:{D1,D2,…,DN},根据拟合得到的函数生成数据:

$$

平均值:D_{average}=\frac{1}{n} \sum_{i=1}^{n}{D_{i}} \

标准差:σ \

失效率:q=\frac{N}{n}, \

N为数据组\left { D_{1},D_{2},…,D_{N} \right }中小于或等于0的个数

$$

根据以上分析,我们计算每个疗法的得分:

$$

g=D_{average} \times (1-q)^{2} \div \sigma

$$

个性化处理

如果病人考虑到四种疗法的费用,结合自身的经济承受能力来选择疗法。我们引入了价格因素r,其中p是疗法所需的费用,r是病人对费用的敏感指数。由于个人经济承受能力的不同,每个人对费用的敏感程度是不同的。因此,我们在模型中引入了费用敏感指数,费用敏感指数越大,说明病人对费用越敏感。当r=0(即pr=1)时,价格因素不起作用,病人对费用不敏感,表示病人只追求最好的治疗效果,无论付出多大的费用。当r=1(即pr=p)时,价格因素对病人选择的疗法有较大的影响,此时病人会折中考虑费用和疗效。

综合考虑效果和费用的共同作用,对刚刚得到的疗法得分进行如下处理,来评价疗法的优劣:

$$

U=g \div p^{r}

$$

计算最终得分的代码在源码的Task3.py中。

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP