今天来介绍Java并发编程中最受欢迎的同步类——堪称并发一枝花之BlockingQueue。
JDK版本:oracle java 1.8.0_102
继续阅读之前,需确保你对锁和条件队列的使用方法烂熟于心,特别是条件队列,否则你可能无法理解以下源码的精妙之处,甚至基本的正确性。本篇暂不涉及此部分内容,需读者自行准备。
接口定义
BlockingQueue继承自Queue,增加了阻塞的入队、出队等特性:
public interface BlockingQueue<E> extends Queue<E> { boolean add(E e); void put(E e) throws InterruptedException; // can extends from Queue. i don't know why overriding here boolean offer(E e); boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException; E take() throws InterruptedException; // extends from Queue // E poll(); E poll(long timeout, TimeUnit unit) throws InterruptedException; int remainingCapacity(); boolean remove(Object o); public boolean contains(Object o); int drainTo(Collection<? super E> c); int drainTo(Collection<? super E> c, int maxElements); }
为了方便讲解,我调整了部分方法的顺序,还增加了注释辅助说明。
需要关注的是两对方法:
阻塞方法BlockingQueue#put()和BlockingQueue#take():如果入队(或出队,下同)失败(如希望入队但队列满,下同),则等待,一直到满足入队条件,入队成功。
非阻塞方法BlockingQueue#offer()和BlockingQueue#poll(),及它们的超时版本:非超时版本是瞬时动作,如果入队当前入队失败,则立刻返回失败;超时版本可在此基础上阻塞一段时间,相当于限时的BlockingQueue#put()和BlockingQueue#take()。
实现类
BlockingQueue有很多实现类。根据github的code results排名,最常用的是LinkedBlockingQueue(253k)和ArrayBlockingQueue(95k)。LinkedBlockingQueue的性能在大部分情况下优于ArrayBlockingQueue,本文主要介绍LinkedBlockingQueue,文末会简要提及二者的对比。
LinkedBlockingQueue
阻塞方法put()和take()
两个阻塞方法相对简单,有助于理解LinkedBlockingQueue的核心思想:在队头和队尾各持有一把锁,入队和出队之间不存在竞争。
前面在Java实现生产者-消费者模型中循序渐进的引出了BlockingQueue#put()和BlockingQueue#take()的实现,可以先去复习一下,了解为什么LinkedBlockingQueue要如此设计。以下是更细致的讲解。
阻塞的入队操作put()
在队尾入队。putLock和notFull配合完成同步。
public void put(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { while (count.get() == capacity) { notFull.await(); } enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); }
现在触发一个入队操作,分情况讨论。
case1:入队前,队列非空非满(长度大于等于2)
入队前需得到锁putLock。检查队列非满,无需等待条件notFull,直接入队。入队后,检查队列非满(精确说是入队前“将满”,但不影响理解),随机通知一个生产者条件notFull满足。最后,检查入队前队列非空,则无需通知条件notEmpty。
注意点:
入队前队列非空非满(长度大于等于2),则head和tail指向的节点不同,入队与出队操作不会同时更新同一节点也就不存在竞争。因此,分别用两个锁同步入队、出队操作才能是线程安全的。进一步的,由于入队已经由锁putLock保护,则enqueue内部实现不需要加锁。
条件notFull可以只随机通知一个等待该条件的生产者线程(使用signal()而不是signalAll())。即
“单次通知”
,目的是减少无效竞争。但这不会产生“信号劫持”的问题,因为只有生产者在等待该条件。条件通知方法singal()是近乎“幂等”的:如果有线程在等待该条件,则随机选择一个线程通知;如果没有线程等待,则什么都不做,不会造成什么恶劣影响。
case2:入队前,队列满
入队前需得到锁putLock。检查队列满,则等待条件notFull。条件notFull可能由出队成功触发(必要的),也可能由入队成功触发(也是必要的,避免“信号不足”的问题)。条件notFull满足后,入队。入队后,假设检查队列满(队列非满的情况同case1),则无需通知条件notFull。最后,检查入队前队列非空,则无需通知条件notEmpty。
注意点:
“信号不足”问题:假设队列满时,存在3个生产者P1-P3(多于一个就可以)同时阻塞在10行;如果此时5个消费者C1-C5(多于一个就可以)快速、连续的出队,但最后只会有一个信号发出(19-20行在take()中的对偶逻辑,只会在队列之前消费前队列满的情况发出信号);一个信号只能唤醒一个生产者P1,但明显此时队列缺少了5个元素,该逻辑不足以唤醒P2、P3。因此,14-15行“入队完成时的通知”是必要的,保证了只要队列非满,每次入队后都能唤醒1个阻塞的生产者,来等待锁释放后竞争锁。即,P1完成入队后,如果检查到队列非满,会随机唤醒一个生产者P2,让P2在P1释放锁putLock后竞争锁,继续入队,P3同理。相比于signalAll()唤醒所有生产者,这种解决方案使得同一时间最多只有一个生产者在清醒的竞争锁,性能提升非常明显。
补充signalNotEmpty()、signalNotFull()的实现:
private void signalNotEmpty() { final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { notEmpty.signal(); } finally { takeLock.unlock(); } }private void signalNotFull() { final ReentrantLock putLock = this.putLock; putLock.lock(); try { notFull.signal(); } finally { putLock.unlock(); } }
case3:入队前,队列空
入队前需得到锁putLock。检查队列空,则无需等待条件notFull,直接入队。入队后,如果队列非满,则同case1;如果队列满,则同case2。最后,假设检查入队前队列空(队列非空的情况同case1),则随机通知一个消费者条件notEmpty满足。
注意点:
只有入队前队列空的情况下,才需要通知条件notEmpty满足。即
“条件通知”
,是一种减少无效通知的措施。因为如果队列非空,则出队操作不会阻塞在条件notEmpty上。另一方面,虽然已经有生产者完成了入队,但可能有消费者在生产者释放锁putLock后、通知条件notEmpty满足前,使队列变空;不过这没有影响,take()方法的while循环能够在线程竞争到锁之后再次确认。通过入队和出队前检查队列长度(while+await),隐含保证了队列空时只允许入队操作,不存在竞争队列。
case4:入队前,队列长度为1
case4是一个特殊情况,分析方法类似于case1,但可能入队与出队之间存在竞争,我们稍后分析。
阻塞的出队操作take()
在队头入队。takeLock和notEmpty配合完成同步。
public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { while (count.get() == 0) { notEmpty.await(); } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; }
依旧是四种case,put()和take()是对偶的,很容易分析,不赘述。
“case4 队列长度为1”时的特殊情况
队列长度为1时,到底入队和出队之间存在竞争吗?这取决于LinkedBlockingQueue的底层数据结构。
最简单的是使用朴素链表,可以自己实现,也可以使用JDK提供的非线程安全集合类,如LinkedList等。但是,队列长度为1时,朴素链表中的head、tail指向同一个节点,从而入队、出队更新同一个节点时存在竞争。
朴素链表:一个节点保存一个元素,不加任何控制和trick。典型如LinkedList。
增加dummy node可解决该问题(或者叫哨兵节点什么的)。定义Node(item, next),描述如下:
初始化链表时,创建dummy node:
dummy = new Node(null, null)
head = dummy.next // head 为 null <=> 队列空
tail = dummy // tail.item 为 null <=> 队列空
在队尾入队时,tail后移:
tail.next = new Node(newItem, null)
tail = tail.next
在队头出队时,dummy后移,同步更新head:
oldItem = head.item
dummy = dummy.next
dummy.item = null
head = dummy.next
return oldItem
在新的数据结构中,更新操作发生在dummy和tail上,head仅仅作为示意存在,跟随dummy节点更新。队列长度为1时,虽然head、tail仍指向同一个节点,但dummy、tail指向不同的节点,从而更新dummy和tail时不存在竞争。
源码中的head即为dummy
,first即为head
:
...public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node<E>(null); } ...private void enqueue(Node<E> node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; } ...private E dequeue() { // assert takeLock.isHeldByCurrentThread(); // assert head.item == null; Node<E> h = head; Node<E> first = h.next; h.next = h; // help GC head = first; E x = first.item; first.item = null; return x; } ...
enqueue和count自增的先后顺序
以put()为例,count自增一定要晚于enqueue执行,否则take()方法的while循环检查会失效。
用一个最简单的场景来分析,只有一个生产者线程T1,一个消费者线程T2。
如果先count自增再enqueue
假设目前队列长度0,则事件发生顺序:
T1线程:count 自增
T2线程:while 检查 count > 0,无需等待条件 notEmpty
T2线程:dequeue 执行
T1线程:enqueue 执行
很明显,在事件1发生后事件4发生前,虽然count>0,但队列中实际是没有元素的。因此,事件3 dequeue会执行失败(预计抛出NullPointerException)。事件4也就不会发生了。
如果先enqueue再count自增
如果先enqueue再count自增,就不会存在该问题。
仍假设目前队列长度0,则事件发生顺序:
T1线程:enqueue 执行
T2线程:while 检查 count == 0,等待条件 notEmpty
T1线程:count 自增
T1线程:通知条件notFull满足
T1线程:通知条件notEmpty满足
T2线程:收到条件notEmpty
T2线程:while 检查 count > 0,无需等待条件 notEmpty
T2线程:dequeue 执行
换个方法,用状态机来描述:
事件E1发生前,队列处于
状态S1
事件E1发生,线程T1 增加了一个队列元素,导致队列元素的数量大于count(1>0),队列转换到
状态S2
事件E1发生后、直到事件E3发生前,队列一直处于
状态S2
事件E3发生,线程T1 使count自增,导致队列元素的数量等于count(1=1),队列转换到
状态S1
事件E3发生后、事件E8发生前,队列一直处于
状态S1
很多读者可能第一次从状态机的角度来理解并发程序设计,所以猴子选择先写出状态迁移序列,如果能理解上述序列,我们再进行进一步的抽象。实际的状态机定义比下面要严谨的多,不过这里的描述已经足够了。
现在补充定义如下,不考虑入队和出队的区别:
队列元素的数量等于count的状态定义为
状态S1
队列元素的数量大于count的状态定义为
状态S2
enqueue操作定义为状态转换S1->S2
count自增操作定义为状态转换S2->S1
LinkedBlockingQueue中的同步机制保证了不会有其他线程看到状态S2,即,S1->S2->S1两个状态转换只能由线程T1连续完成,其他线程无法在中间插入状态转换。
在猴子的理解中,并发程序设计的本质是状态机,即维护合法的状态和状态转换。以上是一个极其简单的场景,用状态机举例子就可以描述;然而,复杂场景需要用状态机做数学证明,这使得用状态机描述并发程序设计不太受欢迎(虽然口头描述也不能算严格证明)。不过,理解实现中的各种代码顺序、猛不丁蹦出的trick,这些只是“知其所以然”;通过简单的例子来掌握其状态机本质,才能让我们了解其如何保证线程安全性,自己也能写出类似的实现,做到“知其然而知其所以然”。后面会继续用状态机分析ConcurrentLinkedQueue的源码,敬请期待。
非阻塞方法offer()和poll()
分析了两个阻塞方法put()、take()后,非阻塞方法就简单了。
瞬时版
以offer为例,poll()同理。假设此时队列非空。
public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; }
case1:入队前,队列非满
入队前需得到锁putLock。检查队列非满(隐含表明“无需等待条件notFull”),直接入队。入队后,检查队列非满,随机通知一个生产者(包括使用put()方法的生产者,下同)条件notFull满足。最后,检查入队前队列非空,则无需通知条件notEmpty。
可以看到,瞬时版offer()在队列非满时的行为与put()相同。
case2:入队前,队列满
入队前需得到锁putLock。检查队列满,直接退出try-block。后同case1。
队列满时,offer()与put()的区别就显现出来了。put()通过while循环阻塞,一直等到条件notFull得到满足;而offer()却直接返回。
一个小point:
c在申请锁putLock前被赋值为-1。接下来,如果入队成功,会执行
c = count.getAndIncrement();
一句,则释放锁后,c的值将大于等于0。于是,这里直接用c是否大于等于0来判断是否入队成功。这种实现牺牲了可读性,只换来了无足轻重的性能或代码量的优化。自己在开发时,不要编写这种代码。
超时版
同上,以offer()为例。假设此时队列非空。
public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { while (count.get() == capacity) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } enqueue(new Node<E>(e)); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return true; }
该方法同put()很像,12-13行判断nanos超时的情况(吞掉了timeout参数非法的异常情况),所以区别只有14行:将阻塞的notFull.await()
换成非阻塞的超时版notFull.awaitNanos(nanos)
。
awaitNanos()的实现有点意思,这里不表。其实现类中的Javadoc描述非常干练:“Block until signalled, interrupted, or timed out.”,返回值为剩余时间。剩余时间小于等于参数nanos,表示:
条件notFull满足(剩余时间大于0)
等待的总时长已超过timeout(剩余时间小于等于0)
nanos首先被初始化为timeout;接下来,消费者线程可能阻塞、收到信号多次,每次收到信号被唤醒,返回的剩余时间都大于0并小于等于参数nanos,再用剩余时间作为下次等待的参数nanos,直到剩余时间小于等于0。以此实现总时长不超过timeout的超时检测。
其他同put()方法。
12-13行判断nanos参数非法后,直接返回了false。实现有问题,有可能违反接口声明。
根据Javadoc的返回值声明,返回值true表示入队成功,false表示入队失败。但如果传进来的timeout是一个负数,那么5行初始化的nanos也将是一个负数;进而一进入while循环,就在13行返回了false。然而,这是一种参数非法的情况,返回false让人误以为参数正常,只是入队失败。这违反了接口声明,并且非常难以发现。
应该在函数头部就将参数非法的情况检查出来,相应抛出IllegalArgumentException。
LinkedBlockingQueue与ArrayBlockingQueue的区别
github上LinkedBlockingQueue和ArrayBlockingQueue的使用频率都很高。大部分情况下都可以也建议使用LinkedBlockingQueue,但清楚二者的异同点,方能对症下药,在针对不同的优化场景选择最合适的方案。
相同点:
支持有界
不同点
LinkedBlockingQueue底层用链表实现:ArrayBlockingQueue底层用数组实现
LinkedBlockingQueue支持不指定容量的无界队列(长度最大值Integer.MAX_VALUE);ArrayBlockingQueue必须指定容量,无法扩容
LinkedBlockingQueue支持懒加载:ArrayBlockingQueue不支持
ArrayBlockingQueue入队时不生成额外对象:LinkedBlockingQueue需生成Node对象,消耗时间,且GC压力大
LinkedBlockingQueue的入队和出队分别用两把锁保护,无竞争,二者不会互相影响;ArrayBlockingQueue的入队和出队共用一把锁,入队和出队存在竞争,一方速度高时另一方速度会变低。不考虑分配对象、GC等因素的话,ArrayBlockingQueue并发性能要低于LinkedBlockingQueue
可以看到,LinkedBlockingQueue整体上是优于ArrayBlockingQueue的。所以,除非某些特殊原因,否则应优先使用LinkedBlockingQueue。
可能不全,欢迎评论,随时增改。
总结
没有。
作者:猴子007
链接:https://www.jianshu.com/p/5dfc81b10e30