容器源码分析 - List
以下源码分析基于 JDK 1.8。
ArrayList
1. 概览
实现了 RandomAccess 接口,因此支持随机访问。这是理所当然的,因为 ArrayList 是基于数组实现的。
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
数组的默认大小为 10。
private static final int DEFAULT_CAPACITY = 10;
2. 扩容
添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,
新容量的大小为 oldCapacity + (oldCapacity >> 1)
,也就是旧容量的 1.5 倍。
扩容操作需要调用 Arrays.copyOf()
把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。
public boolean add(E e) {
//添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
// grow() 方法进行扩容
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。
elementData = Arrays.copyOf(elementData, newCapacity);
}
3. 删除元素
需要调用 System.arraycopy() 将 index+1 后面的元素都向左移动一位,该操作的时间复杂度为 O(N),可以看出 ArrayList 删除元素的代价是非常高的。
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
//index+1 后面的元素都向左移动一位 即index+1位置的后面元素个数 (size-1)-(index+1)+1
int numMoved = size - index - 1;
if (numMoved > 0)
//将 index+1后面的元素都向左移动一位,原来的 (index+1)位置元素就移到 index位置
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
4. Fail-Fast
modCount 用来记录 ArrayList 结构发生变化的次数。结构发生变化是指添加或者删除至少一个元素的所有操作,或者是调整内部数组的大小,仅仅只是设置元素的值不算结构发生变化。
在进行序列化或者迭代等操作时,需要比较操作前后 modCount 是否改变,
如果改变了需要抛出 ConcurrentModificationException。
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
//这里 记录操作前的 modCount
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);//操作
}
//这里的modCount是操作后的 modCount与之前的作比较
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
5. 序列化
ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。
保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。
transient Object[] elementData; // non-private to simplify nested class access
ArrayList 实现了 writeObject() 和 readObject() 来只序列化数组中有元素填充那部分内容。
序列化时需要使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
// 使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
反序列化使用的是 ObjectInputStream 的 readObject() 方法,原理类似。
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
//根据size来分配内存,来控制只序列化数组中有元素填充那部分内容
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
// 使用的是 ObjectInputStream 的 readObject() 方法进行反序列化
a[i] = s.readObject();
}
}
}
6. System.arraycopy()和Arrays.copyOf()方法
Arrays.copyOf() 的源代码内部调用了 System.arraycopy() 方法。
- System.arraycopy() 方法需要目标数组,将原数组拷贝到目标数组里,而且可以选择拷贝的起点和长度以及放入新数组中的位置;
- Arrays.copyOf() 是系统自动在内部创建一个数组,并返回这个新创建的数组。
Vector
1. 同步
它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
2. 与 ArrayList 的比较
- Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。
最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制; - Vector 每次扩容新容量是旧容量的 2 倍空间,而 ArrayList 是 1.5 倍。
3. 替代方案
可以使用 Collections.synchronizedList();
得到一个线程安全的 ArrayList。
List<String> list = new ArrayList<>();
List<String> synList = Collections.synchronizedList(list);
也可以使用 java.util.concurrent 并发包下的 CopyOnWriteArrayList 类。
List<String> list = new CopyOnWriteArrayList<>();
LinkedList
1. 概览
基于双向链表实现,使用 Node 存储链表节点信息。
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
}
每个链表存储了 first 和 last 指针:
transient Node<E> first;
transient Node<E> last;
2. 添加元素
将元素添加到链表尾部:
public boolean add(E e) {
linkLast(e);//这里就只调用了这一个方法
return true;
}
/**
* e作为最后一个元素。
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;//新建节点,尾指针指向新节点
//如果是空的双向链表,则该节点既是尾节点,又是头节点
if (l == null)
first = newNode;
else
l.next = newNode;//指向后继元素也就是指向下一个元素
size++;
modCount++;
}
将元素添加到链表头部:
public void addFirst(E e) {
linkFirst(e);
}
/**
* e元素作为头元素
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);//新建节点,以头节点为后继节点
first = newNode;
//如果链表为空,last节点也指向该节点
if (f == null)
last = newNode;
//否则,将头节点的前驱指针指向新节点,也就是指向前一个元素
else
f.prev = newNode;
size++;
modCount++;
}
3. 删除指定元素
public boolean remove(Object o) {
//如果删除对象为null
if (o == null) {
//从头开始遍历
for (Node<E> x = first; x != null; x = x.next) {
//找到元素
if (x.item == null) {
//从链表中移除找到的元素
unlink(x);
return true;
}
}
} else {
//从头开始遍历
for (Node<E> x = first; x != null; x = x.next) {
//找到元素
if (o.equals(x.item)) {
//从链表中移除找到的元素
unlink(x);
return true;
}
}
}
return false;
}
/**
* 注意:这个待删除的节点是不是头节点或者尾节点
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;//得到后继节点
final Node<E> prev = x.prev;//得到前驱节点
/**
* 断开与 prev 的联系
*/
//如果删除的节点是头节点,直接删除该头结点
if (prev == null) {
first = next;
} else {
prev.next = next;//将前驱节点的后继节点指向后继节点
x.prev = null; //TODO:十分重要
}
/**
* 断开与 next 的联系
*/
//如果删除的节点是尾节点,直接删除该尾节点
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
4. 与 ArrayList 的比较
- ArrayList 基于动态数组实现,LinkedList 基于双向链表实现;
- ArrayList 支持随机访问,LinkedList 不支持;
- LinkedList 在任意位置添加删除元素更快。