继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

探索 Sigmoid 函数:从数学原理到实际应用

素胚勾勒不出你
关注TA
已关注
手记 356
粉丝 53
获赞 274

Sigmoid 函数简介

Sigmoid 函数是一种广泛应用于机器学习和深度学习中的激活函数。在数学中,Sigmoid 函数通常定义为:

f(x) = 1 / (1 + exp(-x))

其中,x 是输入值,f(x) 是输出值。

Sigmoid 函数的特点

  1. 非线性:Sigmoid 函数是一个非线性函数,这意味着它可以用于处理非线性问题。
  2. 范围:Sigmoid 函数的输出值在 0 和 1 之间,这使其适用于二分类问题。
  3. 可微性:Sigmoid 函数是可微的,这意味着它可以用于梯度下降等优化算法中。

Sigmoid 函数的应用

逻辑回归

在逻辑回归中,Sigmoid 函数用于将线性回归的输出转换为概率。具体来说,逻辑回归模型的输出是输入特征与权重的线性组合,然后通过 Sigmoid 函数将其转换为概率。

import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 逻辑回归模型
def logistic_regression(x, weights):
    linear_output = np.dot(x, weights)
    return sigmoid(linear_output)

人工神经网络

在人工神经网络(ANN)中,Sigmoid 函数通常用于隐藏层和输出层的激活函数。通过使用 Sigmoid 函数,ANN 可以学习到非线性映射关系。

import tensorflow as tf

# 定义一个包含一个隐藏层的 ANN
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(32, activation='sigmoid', input_shape=(784,)),
    tf.keras.layers.Dense(10, activation='sigmoid')
])

# 编译模型
***pile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=5)

结论

Sigmoid 函数在 IT 领域,尤其是机器学习和深度学习中具有广泛的应用。通过使用 Sigmoid 函数,我们可以解决许多实际问题,如逻辑回归、人工神经网络等。因此,Sigmoid 函数是程序员和 IT 从业者需要掌握的重要工具。

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP