- 还可以把“接口”理解为 OOP 中的接口概念,比如 Java 中的 interface。我还是通过一个例子来给你解释。假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个 Configuration 类:RedisConfig、MysqlConfig、KafkaConfig。具体的代码实现如下所示。注意,这里我只给出了 RedisConfig 的代码实现,另外两个都是类似的,我这里就不贴了。
public class RedisConfig {
private ConfigSource configSource;
private String address;
private int timeout;
private int maxTotal;
public RedisConfig(ConfigSource configSource) {
this.configSource = configSource;
}
public String getAddress() {
return this.address;
}
public void update() {
}
}
public class KafkaConfig {
public class MysqlConfig {
- 现在,我们有一个新的功能需求,希望支持 Redis 和 Kafka 配置信息的热更新。所谓“热更新(hot update)”就是,如果在配置中心中更改了配置信息,我们希望在不用重启系统的情况下,能将最新的配置信息加载到内存中(也就是 RedisConfig、KafkaConfig 类中)。但是,因为某些原因,我们并不希望对 MySQL 的配置信息进行热更新。
- 为了实现这样一个功能需求,我们设计实现了一个 ScheduledUpdater 类,以固定时间频率(periodInSeconds)来调用 RedisConfig、KafkaConfig 的 update() 方法更新配置信息。具体的代码实现如下所示:
public interface Updater {
void update();
}
public class RedisConfig implemets Updater {
@Override
public void update() {
}
public class KafkaConfig implements Updater {
@Override
public void update() {
}
public class MysqlConfig {
public class ScheduledUpdater {
private final ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();;
private long initialDelayInSeconds;
private long periodInSeconds;
private Updater updater;
public ScheduleUpdater(Updater updater, long initialDelayInSeconds, long periodInSeconds) {
this.updater = updater;
this.initialDelayInSeconds = initialDelayInSeconds;
this.periodInSeconds = periodInSeconds;
}
public void run() {
executor.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
updater.update();
}
}, this.initialDelayInSeconds, this.periodInSeconds, TimeUnit.SECONDS);
}
}
public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mysqlConfig = new MysqlConfig(configSource);
public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300, 300);
redisConfigUpdater.run();
ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60, 60);
redisConfigUpdater.run();
}
}
- 刚刚的热更新的需求我们已经搞定了。现在,我们又有了一个新的监控功能需求。通过命令行来查看 Zookeeper 中的配置信息是比较麻烦的。所以,我们希望能有一种更加方便的配置信息查看方式。为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:
public interface Updater {
void update();
}
public interface Viewer {
String outputInPlainText();
Map<String, String> output();
}
public class RedisConfig implemets Updater, Viewer {
@Override
public void update() {
@Override
public String outputInPlainText() {
@Override
public Map<String, String> output() {
}
public class KafkaConfig implements Updater {
@Override
public void update() {
}
public class MysqlConfig implements Viewer {
@Override
public String outputInPlainText() {
@Override
public Map<String, String> output() {
}
public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Viewer>> viewers = new HashMap<>();
public SimpleHttpServer(String host, int port) {
public void addViewers(String urlDirectory, Viewer viewer) {
if (!viewers.containsKey(urlDirectory)) {
viewers.put(urlDirectory, new ArrayList<Viewer>());
}
this.viewers.get(urlDirectory).add(viewer);
}
public void run() {
}
public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mysqlConfig = new MySqlConfig(configSource);
public static void main(String[] args) {
ScheduledUpdater redisConfigUpdater =
new ScheduledUpdater(redisConfig, 300, 300);
redisConfigUpdater.run();
ScheduledUpdater kafkaConfigUpdater =
new ScheduledUpdater(kafkaConfig, 60, 60);
redisConfigUpdater.run();
SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mysqlConfig);
simpleHttpServer.run();
}
}
- 至此,热更新和监控的需求我们就都实现了。我们来回顾一下这个例子的设计思想。
- 设计了两个功能非常单一的接口:Updater 和 Viewer。ScheduledUpdater 只依赖 Updater 这个跟热更新相关的接口,不需要被强迫去依赖不需要的 Viewer 接口,满足接口隔离原则。同理,SimpleHttpServer 只依赖跟查看信息相关的 Viewer 接口,不依赖不需要的 Updater 接口,也满足接口隔离原则。
- 你可能会说,如果我们不遵守接口隔离原则,不设计 Updater 和 Viewer 两个小接口,而是设计一个大而全的 Config 接口,让 RedisConfig、KafkaConfig、MysqlConfig 都实现这个 Config 接口,并且将原来传递给 ScheduledUpdater 的 Updater 和传递给 SimpleHttpServer 的 Viewer,都替换为 Config,那会有什么问题呢?我们先来看一下,按照这个思路来实现的代码是什么样的。
public interface Config {
void update();
String outputInPlainText();
Map<String, String> output();
}
public class RedisConfig implements Config {
}
public class KafkaConfig implements Config {
}
public class MysqlConfig implements Config {
}
public class ScheduledUpdater {
private Config config;
public ScheduleUpdater(Config config, long initialDelayInSeconds, long periodInSeconds) {
this.config = config;
}
}
public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Config>> viewers = new HashMap<>();
public SimpleHttpServer(String host, int port) {
public void addViewer(String urlDirectory, Config config) {
if (!viewers.containsKey(urlDirectory)) {
viewers.put(urlDirectory, new ArrayList<Config>());
}
viewers.get(urlDirectory).add(config);
}
public void run() {
}
- 这样的设计思路也是能工作的,但是对比前后两个设计思路,在同样的代码量、实现复杂度、同等可读性的情况下,第一种设计思路显然要比第二种好很多。为什么这么说呢?主要有两点原因。
- 首先,第一种设计思路更加灵活、易扩展、易复用。因为 Updater、Viewer 职责更加单一,单一就意味了通用、复用性好。比如,我们现在又有一个新的需求,开发一个 Metrics 性能统计模块,并且希望将 Metrics 也通过 SimpleHttpServer 显示在网页上,以方便查看。这个时候,尽管 Metrics 跟 RedisConfig 等没有任何关系,但我们仍然可以让 Metrics 类实现非常通用的 Viewer 接口,复用 SimpleHttpServer 的代码实现。具体的代码如下所示:
public class ApiMetrics implements Viewer {
public class DbMetrics implements Viewer {
public class Application {
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
public static final MySqlConfig mySqlConfig = new MySqlConfig(configSource);
public static final ApiMetrics apiMetrics = new ApiMetrics();
public static final DbMetrics dbMetrics = new DbMetrics();
public static void main(String[] args) {
SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mySqlConfig);
simpleHttpServer.addViewer("/metrics", apiMetrics);
simpleHttpServer.addViewer("/metrics", dbMetrics);
simpleHttpServer.run();
}
}
- 第二种设计思路在代码实现上做了一些无用功。因为 Config 接口中包含两类不相关的接口,一类是 update(),一类是 output() 和 outputInPlainText()。理论上,KafkaConfig 只需要实现 update() 接口,并不需要实现 output() 相关的接口。同理,MysqlConfig 只需要实现 output() 相关接口,并需要实现 update() 接口。但第二种设计思路要求 RedisConfig、KafkaConfig、MySqlConfig 必须同时实现 Config 的所有接口函数(update、output、outputInPlainText)。除此之外,如果我们要往 Config 中继续添加一个新的接口,那所有的实现类都要改动。相反,如果我们的接口粒度比较小,那涉及改动的类就比较少。