继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Python爬虫超详细讲解(零基础入门,老年人都看的懂)

智慧大石
关注TA
已关注
手记 337
粉丝 33
获赞 206

讲解我们的爬虫之前,先概述关于爬虫的简单概念(毕竟是零基础教程)


爬虫

网络爬虫(又被称为网页蜘蛛,网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序。

原则上,只要是浏览器(客户端)能做的事情,爬虫都能够做。


为什么我们要使用爬虫

互联网大数据时代,给予我们的是生活的便利以及海量数据爆炸式的出现在网络中。

过去,我们通过书籍、报纸、电视、广播或许信息,这些信息数量有限,且是经过一定的筛选,信息相对而言比较有效,但是缺点则是信息面太过于狭窄了。不对称的信息传导,以致于我们视野受限,无法了解到更多的信息和知识。

互联网大数据时代,我们突然间,信息获取自由了,我们得到了海量的信息,但是大多数都是无效的垃圾信息。

例如新浪微博,一天产生数亿条的状态更新,而在百度搜索引擎中,随意搜一条——减肥100,000,000条信息。

在如此海量的信息碎片中,我们如何获取对自己有用的信息呢?

答案是筛选!

通过某项技术将相关的内容收集起来,在分析删选才能得到我们真正需要的信息。

这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等……都能够借助这个技术获取更精准有效的信息加以利用。

网络爬虫技术,虽说有个诡异的名字,让能第一反应是那种软软的蠕动的生物,但它却是一个可以在虚拟世界里,无往不前的利器。


爬虫准备工作

我们平时都说Python爬虫,其实这里可能有个误解,爬虫并不是Python独有的,可以做爬虫的语言有很多例如:PHP,JAVA,C#,C++,Python,选择Python做爬虫是因为Python相对来说比较简单,而且功能比较齐全。

首先我们需要下载python,我下载的是官方最新的版本 3.8.3

其次我们需要一个运行Python的环境,我用的是pychram

http://img2.mukewang.com/60e31b0100010b2901310120.jpg

也可以从官方下载,
我们还需要一些库来支持爬虫的运行(有些库Python可能自带了)

http://img2.mukewang.com/60e31b370001860810550283.jpg

差不多就是这几个库了,良心的我已经在后面写好注释了


(爬虫运行过程中,不一定就只需要上面几个库,看你爬虫的一个具体写法了,反正需要库的话我们可以直接在setting里面安装)


爬虫项目讲解

我做的是爬取豆瓣评分电影Top250的爬虫代码

我们要爬取的就是这个网站:https://movie.douban.com/top250


这边我已经爬取完毕,给大家看下效果图,我是将爬取到的内容存到xls中

http://img1.mukewang.com/60e31b790001910111960517.jpg

我们的爬取的内容是:电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,相关信息。

代码分析

先把代码发放上来,然后我根据代码逐步解析

# -*- codeing = utf-8 -*-

from bs4 import BeautifulSoup  # 网页解析,获取数据

import re  # 正则表达式,进行文字匹配`

import urllib.request, urllib.error  # 制定URL,获取网页数据

import xlwt  # 进行excel操作

#import sqlite3  # 进行SQLite数据库操作


findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,标售规则   影片详情链接的规则

findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)

findTitle = re.compile(r'<span class="title">(.*)</span>')

findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')

findJudge = re.compile(r'<span>(\d*)人评价</span>')

findInq = re.compile(r'<span class="inq">(.*)</span>')

findBd = re.compile(r'<p class="">(.*?)</p>', re.S)


def main():

    baseurl = "https://movie.douban.com/top250?start="  #要爬取的网页链接

    # 1.爬取网页

    datalist = getData(baseurl)

    savepath = "豆瓣电影Top250.xls"    #当前目录新建XLS,存储进去

    # dbpath = "movie.db"              #当前目录新建数据库,存储进去

    # 3.保存数据

    saveData(datalist,savepath)      #2种存储方式可以只选择一种

    # saveData2DB(datalist,dbpath)


# 爬取网页

def getData(baseurl):

    datalist = []  #用来存储爬取的网页信息

    for i in range(0, 10):  # 调用获取页面信息的函数,10次

        url = baseurl + str(i * 25)

        html = askURL(url)  # 保存获取到的网页源码

        # 2.逐一解析数据

        soup = BeautifulSoup(html, "html.parser")

        for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串

            data = []  # 保存一部电影所有信息

            item = str(item)

            link = re.findall(findLink, item)[0]  # 通过正则表达式查找

            data.append(link)

            imgSrc = re.findall(findImgSrc, item)[0]

            data.append(imgSrc)

            titles = re.findall(findTitle, item)

            if (len(titles) == 2):

                ctitle = titles[0]

                data.append(ctitle)

                otitle = titles[1].replace("/", "")  #消除转义字符

                data.append(otitle)

            else:

                data.append(titles[0])

                data.append(' ')

            rating = re.findall(findRating, item)[0]

            data.append(rating)

            judgeNum = re.findall(findJudge, item)[0]

            data.append(judgeNum)

            inq = re.findall(findInq, item)

            if len(inq) != 0:

                inq = inq[0].replace("。", "")

                data.append(inq)

            else:

                data.append(" ")

            bd = re.findall(findBd, item)[0]

            bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)

            bd = re.sub('/', "", bd)

            data.append(bd.strip())

            datalist.append(data)


    return datalist



# 得到指定一个URL的网页内容

def askURL(url):

    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息

        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"

    }

    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)


    request = urllib.request.Request(url, headers=head)

    html = ""

    try:

        response = urllib.request.urlopen(request)

        html = response.read().decode("utf-8")

    except urllib.error.URLError as e:

        if hasattr(e, "code"):

            print(e.code)

        if hasattr(e, "reason"):

            print(e.reason)

    return html



# 保存数据到表格

def saveData(datalist,savepath):

    print("save.......")

    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象

    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表

    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")

    for i in range(0,8):

        sheet.write(0,i,col[i])  #列名

    for i in range(0,250):

        # print("第%d条" %(i+1))       #输出语句,用来测试

        data = datalist[i]

        for j in range(0,8):

            sheet.write(i+1,j,data[j])  #数据

    book.save(savepath) #保存


# def saveData2DB(datalist,dbpath):

#     init_db(dbpath)

#     conn = sqlite3.connect(dbpath)

#     cur = conn.cursor()

#     for data in datalist:

#             for index in range(len(data)):

#                 if index == 4 or index == 5:

#                     continue

#                 data[index] = '"'+data[index]+'"'

#             sql = '''

#                     insert into movie250(

#                     info_link,pic_link,cname,ename,score,rated,instroduction,info)

#                     values (%s)'''%",".join(data)

#             # print(sql)     #输出查询语句,用来测试

#             cur.execute(sql)

#             conn.commit()

#     cur.close

#     conn.close()



# def init_db(dbpath):

#     sql = '''

#         create table movie250(

#         id integer  primary  key autoincrement,

#         info_link text,

#         pic_link text,

#         cname varchar,

#         ename varchar ,

#         score numeric,

#         rated numeric,

#         instroduction text,

#         info text

#         )

#

#

#     '''  #创建数据表

#     conn = sqlite3.connect(dbpath)

#     cursor = conn.cursor()

#     cursor.execute(sql)

#     conn.commit()

#     conn.close()


# 保存数据到数据库


if __name__ == "__main__":  # 当程序执行时

    # 调用函数

     main()

    # init_db("movietest.db")

     print("爬取完毕!")


下面我根据代码,从下到下给大家讲解分析一遍

-- codeing = utf-8 --,开头的这个是设置编码为utf-8 ,写在开头,防止乱码。

然后下面 import就是导入一些库,做做准备工作,(sqlite3这库我并没有用到所以我注释起来了)。

下面一些find开头的是正则表达式,是用来我们筛选信息的。

(正则表达式用到 re 库,也可以不用正则表达式,不是必须的。)

大体流程分三步走:


1. 爬取网页

2.逐一解析数据

3. 保存网页


先分析流程1,爬取网页,baseurl 就是我们要爬虫的网页网址,往下走,调用了 getData(baseurl) ,

我们来看 getData方法

http://img3.mukewang.com/60e31c150001e3f310400074.jpg

这段大家可能看不懂,其实是这样的:
因为电影评分Top250,每个页面只显示25个,所以我们需要访问页面10次,25*10=250。

http://img.mukewang.com/60e31c3900013e0507540046.jpg

我们只要在baseurl后面加上数字就会跳到相应页面,比如i=1时

https://movie.douban.com/top250?start=25

我放上超链接,大家可以点击看看会跳到哪个页面,毕竟实践出真知。

然后又调用了askURL来请求网页,这个方法是请求网页的主体方法,
怕大家翻页麻烦,我再把代码复制一遍,让大家有个直观感受

def askURL(url):

    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息

        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"

    }

    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)


    request = urllib.request.Request(url, headers=head)

    html = ""

    try:

        response = urllib.request.urlopen(request)

        html = response.read().decode("utf-8")

    except urllib.error.URLError as e:

        if hasattr(e, "code"):

            print(e.code)

        if hasattr(e, "reason"):

            print(e.reason)

    return html


这个askURL就是用来向网页发送请求用的,那么这里就有老铁问了,为什么这里要写个head呢?

这是因为我们要是不写的话,访问某些网站的时候会被认出来爬虫,显示错误,错误代码

418

这是一个梗大家可以百度下,

http://img3.mukewang.com/60e31cb00001386c07590182.jpg

所以我们需要 “装” ,装成我们就是一个浏览器,这样就不会被认出来,
伪装一个身份。


来,我们继续往下走,

  html = response.read().decode("utf-8")

这段就是我们读取网页的内容,设置编码为utf-8,目的就是为了防止乱码。

访问成功后,来到了第二个流程:


2.逐一解析数据


解析数据这里我们用到了 BeautifulSoup(靓汤) 这个库,这个库是几乎是做爬虫必备的库,无论你是什么写法。


下面就开始查找符合我们要求的数据,用BeautifulSoup的方法以及 re 库的

正则表达式去匹配,

http://img.mukewang.com/60e31d010001669910400200.jpg

匹配到符合我们要求的数据,然后存进 dataList , 所以 dataList 里就存放着我们需要的数据了。


最后一个流程:


3.保存数据


    # 3.保存数据

    saveData(datalist,savepath)      #2种存储方式可以只选择一种

    # saveData2DB(datalist,dbpath)


保存数据可以选择保存到 xls 表, 需要(xlwt库支持)

也可以选择保存数据到 sqlite数据库, 需要(sqlite3库支持)


这里我选择保存到 xls 表 ,这也是为什么我注释了一大堆代码,注释的部分就是保存到 sqlite 数据库的代码,二者选一就行


保存到 xls 的主体方法是 saveData (下面的saveData2DB方法是保存到sqlite数据库):

http://img3.mukewang.com/60e31d410001a78210720357.jpg

创建工作表,创列(会在当前目录下创建),


   sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表

    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")


然后把 dataList里的数据一条条存进去就行。


最后运作成功后,会在左侧生成这么一个文件

http://img2.mukewang.com/60e31d7f0001e06d02700039.jpg

打开之后看看是不是我们想要的结果

http://img.mukewang.com/60e31d9d00019b0a17790778.jpg

成了,成了!


如果我们需要以数据库方式存储,可以先生成 xls 文件,再把 xls 文件导入数据库中,就可以啦

本篇文章讲解到这里啦,我感觉我讲的还算细致吧,爬虫我也是最近才可以学,对这个比较有兴趣,我肯定有讲的不好的地方,欢迎各位大佬来指正我 。


————————————————

版权声明:本文为CSDN博主「码农BookSea」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/bookssea/article/details/107309591


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP