今天就来玩俯卧撑啦!
1. 准备工作
1.1 安装Python3.8.x
1.2 安装PyCharm社区版
1.3 创建项目
1.4 安装项目使用工具包
1.1 下载安装Python3.8.x版本
首先我们的电脑上要安装Python3.8.x。Python 3.8.x : www.python.org/downloads/
1.2 下载安装PyCharm社区版
PyCharm: www.jetbrains.com/pycharm/dow… 当然你也可以使用自己喜欢的IDE。
1.3 创建一个Python项目
安装好Python和PyCharm之后,我们可以启动PyCharm,创建一个新的Python项目。选择项目的存储位置,创建项目时,可以让PyCharm帮忙创建一个虚拟环境(virtualenv),虚拟环境可以理解为这个项目专属的编程环境,不会影响其他的项目。
1.4 安装项目所用的工具包
项目创建好之后,我们打开PyCharm的Terminal窗口,在这里我们可以输入以下命令来安装这个项目所需要的工具包:opencv-python mediapipe numpy pyautogui。下面的命令会从网络上下载工具包并安装,如果你看到最后有“Successfully installed…”这样的英文,表示安装成功了。
pip install opencv-python mediapipe numpy
复制代码
也可以点开PyCharm的设置,看到项目的Python环境中,是否有以上的工具包,如果有就表示安装成功了。
2. 编写程序
2.1 创建poseutil.py模块
2.2 编写pushup.py
2.3 测试运行
2.1 创建poseutil.py模块
创建一个新的Python文件,取名为poseutil.py,这是我们创建的姿势识别的模块,在这个模块中有一个PoseDetector的姿势识别器类,使用它可以识别人体姿势、获取人体姿势数据以及计算人体姿势相关点的角度。
import cv2
import mediapipe as mp
import math
class PoseDetector():
'''
人体姿势检测类
'''
def __init__(self,
static_image_mode=False,
upper_body_only=False,
smooth_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5):
'''
初始化
:param static_image_mode: 是否是静态图片,默认为否
:param upper_body_only: 是否是上半身,默认为否
:param smooth_landmarks: 设置为True减少抖动
:param min_detection_confidence:人员检测模型的最小置信度值,默认为0.5
:param min_tracking_confidence:姿势可信标记的最小置信度值,默认为0.5
'''
self.static_image_mode = static_image_mode
self.upper_body_only = upper_body_only
self.smooth_landmarks = smooth_landmarks
self.min_detection_confidence = min_detection_confidence
self.min_tracking_confidence = min_tracking_confidence
# 创建一个Pose对象用于检测人体姿势
self.pose = mp.solutions.pose.Pose(self.static_image_mode, self.upper_body_only, self.smooth_landmarks,
self.min_detection_confidence, self.min_tracking_confidence)
def find_pose(self, img, draw=True):
'''
检测姿势方法
:param img: 一帧图像
:param draw: 是否画出人体姿势节点和连接图
:return: 处理过的图像
'''
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# pose.process(imgRGB) 会识别这帧图片中的人体姿势数据,保存到self.results中
self.results = self.pose.process(imgRGB)
if self.results.pose_landmarks:
if draw:
mp.solutions.drawing_utils.draw_landmarks(img, self.results.pose_landmarks,
mp.solutions.pose.POSE_CONNECTIONS)
return img
def find_positions(self, img):
'''
获取人体姿势数据
:param img: 一帧图像
:param draw: 是否画出人体姿势节点和连接图
:return: 人体姿势数据列表
'''
# 人体姿势数据列表,每个成员由3个数字组成:id, x, y
# id代表人体的某个关节点,x和y代表坐标位置数据
self.lmslist = []
if self.results.pose_landmarks:
for id, lm in enumerate(self.results.pose_landmarks.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
self.lmslist.append([id, cx, cy])
return self.lmslist
def find_angle(self, img, p1, p2, p3, draw=True):
'''
获取人体姿势中3个点p1-p2-p3的角度
:param img: 一帧图像
:param p1: 第1个点
:param p2: 第2个点
:param p3: 第3个点
:param draw: 是否画出3个点的连接图
:return: 角度
'''
x1, y1 = self.lmslist[p1][1], self.lmslist[p1][2]
x2, y2 = self.lmslist[p2][1], self.lmslist[p2][2]
x3, y3 = self.lmslist[p3][1], self.lmslist[p3][2]
# 使用三角函数公式获取3个点p1-p2-p3,以p2为角的角度值,0-180度之间
angle = int(math.degrees(math.atan2(y1 - y2, x1 - x2) - math.atan2(y3 - y2, x3 - x2)))
if angle < 0:
angle = angle + 360
if angle > 180:
angle = 360 - angle
if draw:
cv2.circle(img, (x1, y1), 20, (0, 255, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 30, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x3, y3), 20, (0, 255, 255), cv2.FILLED)
cv2.line(img, (x1, y1), (x2, y2), (255, 255, 255, 3))
cv2.line(img, (x2, y2), (x3, y3), (255, 255, 255, 3))
cv2.putText(img, str(angle), (x2 - 50, y2 + 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 255), 2)
return angle
复制代码
2.2 编写pushup.py
编写下面的代码,调用poseutil模块,获取人体姿势数据,并计算人体中肩膀、臀部、膝盖三个点以及肩膀、手肘、手腕构成的角度,通过这2个角度来判断俯卧撑是否标准。
# 导入opencv工具包
import cv2
# 导入numpy
import numpy as np
# 导入姿势识别器
from poseutil import PoseDetector
# 打开视频文件
cap = cv2.VideoCapture('videos/pushup.mp4')
# 姿势识别器
detector = PoseDetector()
# 方向与个数
dir = 0 # 0为下,1为上
count = 0
# 视频宽度高度
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 录制视频设置
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('videos/pushupoutput.mp4', fourcc, 30.0, (width, height))
while True:
# 读取摄像头,img为每帧图片
success, img = cap.read()
if success:
h, w, c = img.shape
# 识别姿势
img = detector.find_pose(img, draw=True)
# 获取姿势数据
positions = detector.find_positions(img)
if positions:
# 获取俯卧撑的角度
angle1 = detector.find_angle(img, 12, 24, 26)
angle2 = detector.find_angle(img, 12, 14, 16)
# 进度条长度
bar = np.interp(angle2, (45, 150), (w // 2 - 100, w // 2 + 100))
cv2.rectangle(img, (w // 2 - 100, h - 150), (int(bar), h - 100), (0, 255, 0), cv2.FILLED)
# 角度小于50度认为撑下
if angle2 <= 50 and angle1 >= 165 and angle1 <= 175:
if dir == 0:
count = count + 0.5
dir = 1
# 角度大于125度认为撑起
if angle2 >= 125 and angle1 >= 165 and angle1 <= 175:
if dir == 1:
count = count + 0.5
dir = 0
cv2.putText(img, str(int(count)), (w // 2, h // 2), cv2.FONT_HERSHEY_SIMPLEX, 10, (255, 255, 255), 20, cv2.LINE_AA)
# 打开一个Image窗口显示视频图片
cv2.imshow('Image', img)
# 录制视频
out.write(img)
else:
# 视频结束退出
break
# 如果按下q键,程序退出
key = cv2.waitKey(1)
if key == ord('q'):
break
# 关闭视频保存器
out.release()
# 关闭摄像头
cap.release()
# 关闭程序窗口
cv2.destroyAllWindows()
复制代码
2.3 测试运行
在实际运行测试时,我们设置的俯卧撑角度是50度到125度之间,可以根据拍摄角度来调整,另外我们要求臀部角度在165度到175度之间,这个也是可以调整的。建议拍摄视频或者使用摄像头时更多的放在人体的侧上部分,这样检测的会比较准确。
作者:编程玩家俱乐部
链接:https://juejin.cn/post/6958980914604933156
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。