继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

读取一个文件的时候,操作系统发生了什么

theanarkh
关注TA
已关注
手记 3
粉丝 1
获赞 3

今天分享一下读取文件的过程。linux万物皆文件,任意文件的操作,都是通过统一的函数开始,所以我们就从read函数,分析针对一般文件的读取过程。

int sys_read(unsigned int fd,char * buf,int count){
    struct file * file;
    struct m_inode * inode;
    // 通过fd拿到file和inode结构体
    if (fd>=NR_OPEN || count<0 || !(file=current->filp[fd]))
        return -EINVAL;
    inode = file->f_inode;
    ...
    /*
        f_pos表示当前的读取指针,i_size表示整个文件大小
        下面代码判断读的长度是否大于剩下的可读长度,是的话只取剩下的部分
    */
    if (count+file->f_pos > inode->i_size)
        count = inode->i_size - file->f_pos;
    // 到底了
    if (count<=0)
        return 0;
    return file_read(inode,file,buf,count);
}

下面是进程结构体和文件系统结构体的关系。

http://img1.sycdn.imooc.com/5e982ecc0001ecd309980315.jpg在这里插入图片描述
file_read函数是对一般文件进行读取的函数。


int file_read(struct m_inode * inode, struct file * filp, char * buf, int count)
{
    int left,chars,nr;
    struct buffer_head * bh;

    if ((left=count)<=0)
        return 0;
    while (left) {
        // bmap取得该文件偏移对应的硬盘块号,然后读进来
        if (nr = bmap(inode,(filp->f_pos)/BLOCK_SIZE)) {
            if (!(bh=bread(inode->i_dev,nr)))
                break;
        } else
            bh = NULL;
        // 偏移
        nr = filp->f_pos % BLOCK_SIZE;
        // 读进来的数据中,可读的长度和还需要读的长度,取小的,如果还没读完继续把块从硬盘读进来
        chars = MIN( BLOCK_SIZE-nr , left );
        filp->f_pos += chars; // 更新偏移指针
        left -= chars; // 更新还需药读取的长度
        if (bh) {
            char * p = nr + bh->b_data;
            while (chars-->0)
                put_fs_byte(*(p++),buf++); //复制到buf里 
            brelse(bh);
        } else {
            // 没有数据则复制0
            while (chars-->0)
                put_fs_byte(0,buf++);
        }
    }
    // 更新访问时间
    inode->i_atime = CURRENT_TIME;
    // 返回读取的长度,如果一个都没读则返回错误
    return (count-left)?(count-left):-ERROR;
}

上面的函数代码看起来很多,但是逻辑其实比较清晰。他主要是根据当前的读指针位置,算出对应文件内容所在的硬盘块,接着把文件在硬盘中的数据块读进来内存,然后复制到用户空间。所以现在的问题有两个。
1 根据读指针计算文件内容在硬盘的位置。我们知道一个文件对应一个inode。inode里记录了文件内容的一些信息。如图。

http://img1.sycdn.imooc.com/5e982ecc0001f5e207891142.jpg在这里插入图片描述
我们看到inode里记录了文件每个数据块的逻辑块号在硬盘中对应的块号。所以我们根据读指针和硬盘逻辑块的大小算出逻辑块号。然后根据逻辑块号从inode的映射表中找到对应的硬盘块号。
2 根据硬盘块号,把数据读取出来。读取函数是bread(block read)。


struct buffer_head * bread(int dev,int block)
{
    struct buffer_head * bh;
    // 先从buffer链表中获取一个buffer
    if (!(bh=getblk(dev,block)))
        panic("bread: getblk returned NULL\n");
    // 之前已经读取过并且有效,则直接返回
    if (bh->b_uptodate)
        return bh;
    // 返回读取硬盘的数据
    ll_rw_block(READ,bh);
    //ll_rw_block会锁住bh,所以会先阻塞在这然后等待唤醒 
    wait_on_buffer(bh);
    // 底层读取数据成功后会更新该字段为1,否则就是读取出错了
    if (bh->b_uptodate)
        return bh;
    brelse(bh);
    return NULL;
}

我们分三部分分析bread函数。
1 根据设备号和块号从buffer链表中获取缓存的数据,操作系统在硬盘上面实现了一层缓存系统。对于文件的读写进行了缓存处理。比如我们读取了一个文件的某一部分内容,如果下次继续读取这部分内容,则不需要再从硬盘读取,直接从缓存中读取就行。这样就提高了读取的速度,因为我们知道硬盘的读取是非常慢的操作。当然操作系统会对数据的有效性进行维护(b_uptodate字段等于1说明有效)。
2 如果缓存失效,则调用ll_rw_block函数进行硬盘读取。
3 因为硬盘读取非常慢,所以这时候进程会阻塞。通过wait_on_buffer函数实现进程的阻塞。等到进程被唤醒的时候再次通过b_uptodate字段判断是否读取成功。b_uptodate字段会在数据读取成功的时候设置为1.

static inline void wait_on_buffer(struct buffer_head * bh)
{
    cli();
    while (bh->b_lock)
        sleep_on(&bh->b_wait);
    sti();
}

我们继续分析ll_rw_block函数,看看操作系统是如何对硬盘的数据进行读取的。

void ll_rw_block(int rw, struct buffer_head * bh)
{
    unsigned int major;

    if ((major=MAJOR(bh->b_dev)) >= NR_BLK_DEV ||
    !(blk_dev[major].request_fn)) {
        printk("Trying to read nonexistent block-device\n\r");
        return;
    }
    // 新建一个读写硬盘数据的请求
    make_request(major,rw,bh);
}

ll_rw_block函数的逻辑非常简单,直接调用make_request。分析这个函数之前我们先了解一下struct request结构体和一些硬盘读取的内容。硬盘对应上层的读写操作,维护了一个结构体struct blk_dev_struct。

http://img1.sycdn.imooc.com/5e982ecd0001dd8b05480166.jpg在这里插入图片描述
该结构体记录了请求硬盘操作的任务队列和处理函数。struct request结构体则记录了请求硬盘任务的一些上下文。比如操作的类型(读或写),读取的扇区、扇区数、保存读写数据的指针。接下来我们继续分析make_request函数。


static void make_request(int major,int rw, struct buffer_head * bh)
{
    struct request * req;
    int rw_ahead;
    ...
    // 请求队列1/3用于读,2/3用于写
repeat:
    if (rw == READ)
        req = request+NR_REQUEST;
    else
        req = request+((NR_REQUEST*2)/3);
    /* find an empty request */
    while (--req >= request)
        // 小于0说明该结构没有被使用
        if (req->dev<0)
            break;
    // 没有找到可用的请求结构
    if (req < request) {
        // 预读写则直接返回
        if (rw_ahead) {
            unlock_buffer(bh);
            return;
        }
        // 阻塞等待可用的请求结构
        sleep_on(&wait_for_request);
        // 被唤醒后重新查找
        goto repeat;
    }

    req->dev = bh->b_dev;
    req->cmd = rw;
    req->errors=0;
    req->sector = bh->b_blocknr<<1; // 一块等于两个扇区所以乘以2,即左移1位,比如要读地10块,则读取第二十个扇区
    req->nr_sectors = 2;// 一块等于两个扇区,即读取的扇区是2
    req->buffer = bh->b_data;
    req->waiting = NULL;
    req->bh = bh;
    req->next = NULL;
    // 插入请求队列
    add_request(major+blk_dev,req);
}

该函数就是生成一个struct request节点插入到请求硬盘操作的队列中。继续看add_request

static void add_request(struct blk_dev_struct * dev, struct request * req)
{
    struct request * tmp;

    req->next = NULL;
    cli();
    if (req->bh)
        req->bh->b_dirt = 0;
    // 当前没有请求项,插入队列,开始处理请求
    if (!(tmp = dev->current_request)) {
        dev->current_request = req;
        sti();
        (dev->request_fn)();
        return;
    }
    // 如果已经在处理队列中的请求,那么使用电梯算法插入相应的位置,等待处理。
    for ( ; tmp->next ; tmp=tmp->next)
        if ((IN_ORDER(tmp,req) ||
            !IN_ORDER(tmp,tmp->next)) &&
            IN_ORDER(req,tmp->next))
            break;
    req->next=tmp->next;
    tmp->next=req;
    sti();
}

不管是第一个任务节点还是后续的任务节点。都由request_fn对应的函数逐个进行处理。硬盘操作对应的处理函数是do_hd_request。do_hd_request函数根据request结构体中的上下文,对硬盘控制器发送操作命令,比如需要读取的操作类型、读取的扇区等。并且设置回调函数read_intr(因为我们分析的是读取操作)。这时候进程就阻塞了。等到硬盘控制器从硬盘中读取数据成功后,会触发中断。在中断处理函数中会执行刚才我们设置的回调read_intr。read_intr函数从硬盘控制器的数据寄存器中把数据读取进来。如果还没读取完毕,则继续等待后续硬盘中断。如果全部读取成功则唤醒进程。

    // 读写数据成功,数据有效位置1
    CURRENT->bh->b_uptodate = uptodate;
    unlock_buffer(CURRENT->bh);
inline void unlock_buffer(struct buffer_head * bh)
{
    if (!bh->b_lock)
        printk(DEVICE_NAME ": free buffer being unlocked\n");
    bh->b_lock=0;
    // 唤醒等待的进程
    wake_up(&bh->b_wait);
}

至此,文件的读取整个过程就分析完了。最后顺便说一下文件写入的过程,其实和读取的过程很类似。如果是修改文件之前的内容,则先把这块内容读取到内存,然后修改内存的数据,最后回写硬盘。如果是追加性写入,则先在硬盘申请一个新的数据块,并且修改位图、inode信息。然后把新块读取到内存,接着修改内存数据,最后回写到硬盘。

欢迎关注 编程杂技 分享技术 交流技术spacer.gif


打开App,阅读手记
2人推荐
发表评论
随时随地看视频慕课网APP