仍然是 动手学尝试学习系列的笔记,原文见:多类逻辑回归 — 从0开始 。 这篇的主要目的,是从一堆服饰图片中,通过机器学习识别出每个服饰图片对应的分类是什么(比如:一个看起来象短袖上衣的图片,应该归类到T-Shirt分类)
示例代码如下,这篇的代码略复杂,分成几个步骤解读:
一、下载数据,并显示图片及标签
1 from mxnet import gluon
2 from mxnet import ndarray as nd
3 import matplotlib.pyplot as plt
4 import mxnet as mx
5 from mxnet import autograd
6
7 def transform(data, label):
8 return data.astype('float32')/255, label.astype('float32')
9
10 #训练数据集(需联网下载,网速慢时,会很卡)
11 mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
12
13 #测试数据集(需联网下载)
14 mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
15
16 # data, label = mnist_train[0]
17 # ('example shape: ', data.shape, 'label:', label)
18
19 #显示服饰图片
20 def show_images(images):
21 n = images.shape[0]
22 _, figs = plt.subplots(1, n, figsize=(15, 15))
23 for i in range(n):
24 figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
25 figs[i].axes.get_xaxis().set_visible(False)
26 figs[i].axes.get_yaxis().set_visible(False)
27 plt.show()
28
29 #获取图片对应分类标签文本
30 def get_text_labels(label):
31 text_labels = [
32 'T 恤', '长 裤', '套头衫', '裙 子', '外 套',
33 '凉 鞋', '衬 衣', '运动鞋', '包 包', '短 靴'
34 ]
35 return [text_labels[int(i)] for i in label]
36
37 #下面这些代码,用于辅助大家理解示例图片数据集内部结构
38 # tup1 = mnist_train[0:1] #取出训练集的第1个样本
39 # print(type(tup1)) #<class 'tuple'> 可以看出这是个元组类型
40 # print(len(tup1)) #2 有2个元素
41 # print(type(tup1[0])) #<class 'mxnet.ndarray.ndarray.NDArray'> 第1个元素是一个矩阵
42 # print(type(tup1[1])) #<class 'numpy.ndarray'> 第2个元素是numpy的矩阵
43 # print(tup1[0].shape) #(1, 28, 28, 1) 第1个元素是一个四维矩阵,用来存储每张图中的像素点对应的值,最后1维表示RGB通道,这里只取了1个通道
44 # print(tup1[1].shape) #(1,) 第2个元素用于表示图片对应的文本分类的索引值
45 # print(tup1[0]) #打印第1个元素(即:四维矩阵的值),<NDArray 1x28x28x1 @cpu(0)> 结果太长,就不列在注释里了
46 # print(tup1[1]) #[2.],打印第2个元素(即:该图片对应的分类索引数值)
47 # print(get_text_labels(tup1[1])) #显示分类索引值对应的文本['pullover']
48
49 #取出训练集中的图片数据,以及图片标签索引值
50 data, label = mnist_train[0:10]
51
52 #打印数据集的相关信息
53 print('example shape: ', data.shape, 'label:', label)
54
55 #显示图片
56 show_images(data)
57
58 #打印图片分类标签
59 print(get_text_labels(label))
首次运行时,可能会很久都没有反应,让人误以为代码有问题,其实背后在联网下载数据,去睡会儿,等醒来的时候,估计就下载好了~_~,下载的数据会保存在~/.mxnet/datasets/fashion-mnist目录(mac环境):
下载完成后,上面的代码会将图片数据解析并显示出来,类似下面这样:
二、读取数据并初始化参数
1 #批量读取数据
2 batch_size = 256
3 #训练集
4 train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
5 #测试集
6 test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
7
8 #每张图片的像素用向量表示,就是28*28的长度,即:784
9 num_inputs = 784
10 #要预测10张图片,即:输出结果长度为10的向量
11 num_outputs = 10
12
13 #初始化权重W、偏置b参数矩阵
14 W = nd.random_normal(shape=(num_inputs, num_outputs))
15 b = nd.random_normal(shape=num_outputs)
16
17 params = [W, b]
18
19 #附加梯度,方便后面用梯度下降法计算
20 for param in params:
21 param.attach_grad()
这与之前的 机器学习笔记(1):线性回归 很类似,不再重复解释
三、创建模型
1 #归一化函数
2 def softmax(X):
3 exp = nd.exp(X)
4 partition = exp.sum(axis=1, keepdims=True)
5 return exp / partition
6
7 #计算模型(仍然是类似y=w.x+b的方程)
8 def net(X):
9 return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b)
10
11 #损失函数(使用交叉熵函数)
12 def cross_entropy(yhat, y):
13 return - nd.pick(nd.log(yhat), y)
14
15 #梯度下降法
16 def SGD(params, lr):
17 for param in params:
18 param[:] = param - lr * param.grad
其中softmax(归一化)及交叉熵cross_entropy,详情可参考上篇:归一化(softmax)、信息熵、交叉熵
四、如何评估准确度
1 #计算准确度
2 def accuracy(output, label):
3 return nd.mean(output.argmax(axis=1) == label).asscalar()
4
5 def _get_batch(batch):
6 if isinstance(batch, mx.io.DataBatch):
7 data = batch.data[0]
8 label = batch.label[0]
9 else:
10 data, label = batch
11 return data, label
12
13 #评估准确度
14 def evaluate_accuracy(data_iterator, net):
15 acc = 0.
16 if isinstance(data_iterator, mx.io.MXDataIter):
17 data_iterator.reset()
18 for i, batch in enumerate(data_iterator):
19 data, label = _get_batch(batch)
20 output = net(data)
21 acc += accuracy(output, label)
22 return acc / (i+1)
机器学习的效果如何,通常要有一个评价值,上面的函数就是用来估计算法和模型准确度的。
注: 这里面用到了二个新的函数mean,argmax 解释一下
mean类似sql中的avg函数,就是求平均值,即把一个矩阵的所有元数加起来,然后除以元数个数
+ View Code?
123 | from mxnet import ndarray as nd x = nd.array([ 1 , 2 , 3 , 4 , 5 , 6 ]); print (x,x.mean(),( 1 + 2 + 3 + 4 + 5 + 6 ) / 6.0 ) |
输出如下:
[ 1. 2. 3. 4. 5. 6.]
<NDArray 6 @cpu(0)>
[ 3.5]
<NDArray 1 @cpu(0)> 3.5
而argmax,是找出(指定轴向)最大值的索引下标
from mxnet import ndarray as nd
x = nd.array([1,4,7,3,6])
print(x.argmax(axis=0))
输出为[ 2.],即:第3列数字7最大。再来个多维矩阵的
如上图,多维矩阵时,如果指定axis=0,表示轴的方向是纵向(自上而下),显然第1列中的最大值7在第2行(即:row_index是1),第2列的最大值9在第3行(即:row_index=2),类推第3列的最大值8在第1行(row_index=0),最终输出的结果就是[1, 2, 0]
如果把axis指定为1,则轴的方向为横向(自左向右),如下图:
axis为1时,输出的索引,为列下标(即:第几列),显然8在第2列,7在第0列,9在第1列。
现在我们来想一下:为啥argmax结合mean这二个函数,可以用来评估准确度?
答案:预测的结果也是一个矩阵,通常预测对了,该元素值为1,预测错误则为0。
如上图,假如有3个指标,预测对了2个,第三行,一个都没预测对,那么准确率为2/3,即0.6666左右
五、训练
1 #学习率
2 learning_rate = .1
3
4 #开始训练
5 for epoch in range(5):
6 train_loss = 0.
7 train_acc = 0.
8 for data, label in train_data:
9 with autograd.record():
10 output = net(data)
11 loss = cross_entropy(output, label)
12 loss.backward()
13 SGD(params, learning_rate / batch_size)
14 train_loss += nd.mean(loss).asscalar()
15 train_acc += accuracy(output, label)
16
17 test_acc = evaluate_accuracy(test_data, net)
18 print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
19 epoch, train_loss / len(train_data), train_acc / len(train_data), test_acc))
训练过程与之前的机器学习笔记(1):线性回归 套路一样,参看之前的即可。
六、显示预测结果
1 #显示结果
2 data, label = mnist_test[0:10]
3 show_images(data)
4 print('true labels')
5 print(get_text_labels(label))
6
7 predicted_labels = net(data).argmax(axis=1)
8 print('predicted labels')
9 print(get_text_labels(predicted_labels.asnumpy()))
运行结果,参考下图:
可以看到损失函数的计算值在一直下降(即:计算在收敛),最终的结果中红线部分为100%预测正确的,其它一些外形相似的分类:衬衣、T恤、套头衫、外套 这些都是"有袖子类的上衣",并没有完全预测正确,但整体方向还是对的(即:并没有把"上衣"识别成"鞋子"或"包包"等明显不靠谱的分类),最终的模型、算法及参数有待进一步提高。