UDP 协议简单了解及应用
- udp 是 User Datagram Protocol 的简称,意思是用户数据报协议。这是一种无连接的传输协议,在 OSI(Open System Interconnect,开放系统互联)参考模型的传输层,提供简单不可靠信息传送服务。udp 为应用程序提供无需建立连接就可以发送封装的 IP 数据报的方法,只管发送,甭管对方是否收到,它在 IP 报文的协议号是 17,正式规范是IETF RFC 768
- UDP 报文没有可靠性保证,不确保数据顺序和流量控制,有数据直接发送,无连接无状态,所以限制少延迟小速度快传输效率高,适合快速发送少量数据,可靠性要求不高的应用。在接收端,udp 把每个消息段放在队列,应用程序每次从队列中读一个消息段。udp 虽然能检测错误,但不校正,只是简单扔掉损坏消息段或者给程序提供警告信息
- 基于以上特点,udp 是一个理想的消息分发协议,在网络好的环境中,比如同一个网络的主机之间通信,或者同一主机的多个应用,在网络差的环境中,丢包严重,而一些恶劣的检测场景下,实时抗干扰等要求高,udp 能达到较高通信速率。常用的场景有:聊天室,投屏信息显示,音频视频等多媒体传输。不要求传输完整而是要求传输速率,即使有损坏也不影响
实践操作
发送端
using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
namespace UdpSender
{
class Program
{
static void Main(string[] args)
{
Socket s = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);
IPAddress broadcast = IPAddress.Loopback;
IPEndPoint ep = new IPEndPoint(broadcast, 514);
Console.WriteLine("请输入要发送的内容:");
while (true)
{
byte[] sendbuf = Encoding.UTF8.GetBytes(Console.ReadLine());
s.SendTo(sendbuf, ep);
}
}
}
}
接收端
- 接收端同样简单,接收方法是一个同步方法,会一直等到接收到消息才继续执行
using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
namespace Udp
{
class Program
{
static void Main(string[] args)
{
var port = 514;
var server =
new UdpClient(port);
var remoteEP = new IPEndPoint(IPAddress.Broadcast, port);
try
{
while (true)
{
Console.WriteLine("等待广播");
var bytes = server.Receive(ref remoteEP);
var msg = Encoding.UTF8.GetString(bytes);
Console.WriteLine($"接收来自 {remoteEP} 的广播:");
Console.WriteLine($"{msg}");
Console.WriteLine();
}
}
catch (SocketException e)
{
Console.WriteLine(e);
}
finally
{
server.Close();
}
}
}
}
自定义接收
- 现在玩点不一样了,因为发送接收都比较简单,自己写代码接收,加深理解,发送端代码同理
- 参考 UdpClient、Socket 的代码,抠出关键性代码,只需要三步即可
- 根据网络类型,socket 接收类型,协力类型获取一个句柄
- 在该句柄上绑定端口,监听消息
- 从句柄获取消息以及客户端地址信息
using System;
using System.Net;
using System.Net.Sockets;
using System.Reflection;
namespace Udp
{
public class SocketReceiver
{
private IntPtr _handle;
public SocketReceiver() : this(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp)
{
}
public SocketReceiver(int port) : this(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp)
{
var localEP = new IPEndPoint(IPAddress.Any, port);
Bind(localEP);
}
public SocketReceiver(AddressFamily addressFamily, SocketType socketType, ProtocolType protocolType)
{
Dns.GetHostName();
_handle = Interop.Winsock.WSASocketW(addressFamily, socketType, protocolType, IntPtr.Zero, 0u, SocketConstructorFlags.WSA_FLAG_OVERLAPPED);
}
public void Bind(EndPoint localEP)
{
var remoteEP = localEP;
var socketAddress = remoteEP.Serialize();
var buffer = socketAddress.GetValue("Buffer") as byte[];
var socketError = Interop.Winsock.bind(_handle, buffer, socketAddress.Size);
}
public unsafe byte[] Receive(ref IPEndPoint remoteEP)
{
var socketAddress = remoteEP.Serialize();
var socketAddressBuffer = socketAddress.GetValue("Buffer") as byte[];
var socketAddressSize = socketAddress.Size;
var maxSize = 0x10000;
var buffer = new byte[maxSize];
var received = 0;
fixed (byte* pinnedBuffer = &buffer[0])
{
received = Interop.Winsock.recvfrom(_handle, pinnedBuffer, maxSize, SocketFlags.None,
socketAddressBuffer, ref socketAddressSize);
}
socketAddress.SetValue("Buffer", socketAddressBuffer);
socketAddress.SetValue("InternalSize", socketAddressSize);
remoteEP = remoteEP.Create(socketAddress) as IPEndPoint;
if (received < maxSize)
{
byte[] newBuffer = new byte[received];
Buffer.BlockCopy(buffer, 0, newBuffer, 0, received);
return newBuffer;
}
return buffer;
}
public void Close()
{
GC.SuppressFinalize(this);
}
}
public static class ReflectionHelper
{
public static object GetValue(this object obj, string name)
{
var value = obj.GetType().InvokeMember(name,
BindingFlags.Instance | BindingFlags.GetField |BindingFlags.NonPublic,
null, obj, null);
return value;
}
public static void SetValue(this object obj, string name, object value)
{
obj.GetType().InvokeMember(name,
BindingFlags.Instance | BindingFlags.SetField | BindingFlags.NonPublic,
null, obj, new[] { value });
}
}
internal static class Interop
{
internal static class Winsock
{
[DllImport("ws2_32.dll", SetLastError = true)]
internal static extern SocketError bind([In] IntPtr socketHandle, [In] byte[] socketAddress, [In] int socketAddressSize);
[DllImport("ws2_32.dll", SetLastError = true)]
internal unsafe static extern int recvfrom([In] IntPtr socketHandle, [In] byte* pinnedBuffer, [In] int len, [In] SocketFlags socketFlags, [Out] byte[] socketAddress, [In] [Out] ref int socketAddressSize);
[DllImport("ws2_32.dll", CharSet = CharSet.Unicode, SetLastError = true)]
internal static extern IntPtr WSASocketW([In] AddressFamily addressFamily, [In] SocketType socketType, [In] ProtocolType protocolType, [In] IntPtr protocolInfo, [In] uint group, [In] SocketConstructorFlags flags);
}
}
[Flags]
internal enum SocketConstructorFlags
{
WSA_FLAG_OVERLAPPED = 0x1,
WSA_FLAG_MULTIPOINT_C_ROOT = 0x2,
WSA_FLAG_MULTIPOINT_C_LEAF = 0x4,
WSA_FLAG_MULTIPOINT_D_ROOT = 0x8,
WSA_FLAG_MULTIPOINT_D_LEAF = 0x10
}
}
- 注意上面自定义的接收代码包含不安全代码,需要在项目文件设置一下
<PropertyGroup>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>
总结
- 上面自定义代码比较长,经过手动实践,收获还是不少的。比如:
- P/Invoke 操作调用系统 api,还有句柄类型 IntPtr 的理解
- 网络地址的知识,比如发送地址是
192.168.1.255
则是广播消息到网络段192.168.1
的所有主机
- SocketAddress 套接字地址,不依赖于具体协议,不论是 IPV4 还是 IPV6 都可以表示
- 反射操作,反射获取或者设置值,Type.InvokeMember 方法加上 BindingFlags 可描述想要的反射操作
- 指针操作,获取 buffer 的内存地址
- 具体调试的时候发现,服务端绑定监听端口之后,还没开始接收数据,客户端先发数据,服务端后续仍然收到所有数据,这可直观感受,消息到达后,存放于缓冲区队列,等待程序获取。这一点可有注意于理解
NetworkStream
网络流,可将接收改为异步+回调的方式接收消息该流的读取操作,实际就是从系统缓冲区读取数据。其中还请教了大神,UDP 数据缓冲区数据满了之后就会有数据丢失的情况,这是因为 udp 没有流量控制,而 TCP 则不会丢失。其它缓冲区满的情况还要继续摸索,不过相关参数还是可以调节的,比如缓冲区大小、TCP 的客户端连接数等
- 从最简单的 udp 协议开始了解网络通信,再逐渐延伸到流量控制、可靠性保证、安全性等方面,各个概念就会相对容易理解,所以 udp 应该是个很不错的切入点
打开App,阅读手记