import os
import pandas as pd
import numpy as np
def train_data_reads(path):
data_directory = path + "/data"
#获取数据路径
data_name_list = os.listdir(data_directory)
file_name = data_name_list[0]
#数据的路径:data_path
data_path = data_directory + "/" + file_name
name,extension = file_name.split(".")
if extension == "csv":
try:
data = pd.read_csv(data_path,encoding = "gbk")
except:
data = pd.read_csv(data_path,encoding = "utf-8")
elif extension == "txt":
try:
data = pd.read_csv(data_path,encoding = "gbk",sep = "\t")
except:
data = pd.read_csv(data_path,encoding = "utf-8",sep = "\t")
else:
data = pd.read_excel(data_path)
return data
def train_data_reprocess(data):
#剔除重复值
data = data.drop_duplicates()
data = data.reset_index(drop = True)
return data
def feature_label_split(data):
#获取dataFrame的名
name_list = data.columns.values.tolist()
label_name = name_list[len(name_list) - 1]
#将数据中label为空的数据删除
data = data[np.isnan(data[label_name]) == False]
#拆分特征与标签
x = data.drop(["ID",label_name],axis = 1)
y = data[label_name]
#补全特征中的缺失值
feature_name_list = x.columns.values.tolist()
class_name_list = [name for name in feature_name_list if name.find("class") > 0]
num_name_list = [name for name in feature_name_list if name.find("num") > 0]
class_filled_df = x[class_name_list].fillna("missing")
num_filled_df = x[num_name_list].fillna(data.mean())
new_x = pd.concat([class_filled_df,num_filled_df],axis = 1)
return new_x,y
#将分类特征转换成哑变量
def dummy_variable_transform(x):
#获取feature的列名
columns_name = x.columns.values.tolist()
for feature_name in columns_name:
feature_name_split = feature_name.split("_", 1)
name = feature_name_split[0]
feature_type = feature_name_split[1]
if feature_type == 'class':
dummy_class = pd.get_dummies(x[feature_name], prefix=name, drop_first=True)
x = x.drop(feature_name, axis=1).join(dummy_class)
return x
#对数据集X进行归一化
#线性回归对最大值,最小值敏感,思考一下,标准化Or归一化哪个更好
def data_normalization(x)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range = (0,1))
scaler.fit(x)
data = scaler.transform(x)
return data
#划分训练集和测试集
def train_test_div(x,y,percent):
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = percent)
return x_train,x_test,y_train,y_test
#train_test_split:先打乱顺序,然后进行分割
#1.线性回归预测
def lin_predict(x_train,x_test,y_train,y_test):
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score
linreg = LinearRegression()
linreg.fit(x_train,y_train)
y_pred = linreg.predict(x_test)
y_pred = list(map(lambda x: x if x >= 0 else 0,y_pred))
MSE = np.sqrt(sum((np.array(y_test) - np.array(y_pred)) ** 2 ) / len(y_pred) ) #均方根误差作为结果
R2 = r2_score(y_test,y_pred)
return MSE,R2
#2.决策树预测
#决策树不需要变量变为哑变量
def tree_predict(x_train,x_test,y_train,y_test):
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor(max_depth = 5)
reg.fit(x_train,y_train)
y_pred = reg.predict(x_test)
y_pred = list(map(lambda x: x if x >= 0 else 0,y_pred))
MSE = np.sqrt(sum((np.array(y_test) - np.array(y_pred)) ** 2 ) / len(y_pred) ) #均方根误差作为结果
R2 = r2_score(y_test,y_pred)
return MSE,R2
#3.xgboost回归
#xgboost不需要变量变为哑变量
def xgb_predict(x_train,x_test,y_train,y_test):
from xgboost import XGBRegressor
reg = XGBRegressor(learning_rate = 0.05,max_depth = 5,n_estimators = 500)
reg.fit(x_train,y_train)
y_pred = reg.predict(x_test)
y_pred = list(map(lambda x: x if x >= 0 else 0,y_pred))
MSE = np.sqrt(sum((np.array(y_test) - np.array(y_pred)) ** 2 ) / len(y_pred) ) #均方根误差作为结果
R2 = r2_score(y_test,y_pred)
return MSE,R2
def main():
path = "E:/AnaLinReg/Data"
data = train_data_reads(path)
data = train_data_reprocess(data)
x,y = feature_label_split(data)
x = dummy_variable_transform(x)
x = data_normalization(x)
x_train,x_test,y_train,y_test = train_test_div(x3,y2,0.3)
MSE,R2 = lin_predict(x_train,x_test,y_train,y_test)
print (MSE)
print (R2)
if __name__ == "__main__":
main()
打开App,阅读手记