继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

13.蜜汁代码(6)

Coder_zheng
关注TA
已关注
手记 71
粉丝 23
获赞 45
from keras.datasets import boston_housing
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import RMSprop
import numpy as np 
(train_data,train_target),(test_data,test_target) = boston_housing.load_data()

#标准化数据
mean = train_data.mean(axis = 0)
std  = train_data.std(axis = 0)

train_data = (train_data - mean)/std  #标准化训练集
test_data  = (test_data  - mean)/std  #标准化测试集
#更标准一点的操作
#应该是将train_data,test_data叠加在一起求mean,std

#构建神经网络
def build_model():
	model = Sequential()
	#input layer
	model.add(Dense(64,input_shape= (13,),activation = "relu")) 
	#hidden layer
	model.add(Dense(64,activation = "relu"))
	#output layer
	model.add(Dense(1))
	#输出的数据是连续的,不需要激活函数

	#编译模型:优化器,损失函数
	model.compile(optimizer = RMSprop(),loss = "mse",metrics = ['mae'])
	return model 

#交叉验证
#4折,404刚好可以被4整除
k = 4 
# 4 * num_val_samples = len(train_data)
num_val_samples = len(train_data) // k
#训练周期:100
num_epochs = 100
#储存每个验证集的分数
all_scores = []

#交叉验证的循环
for i in range(k):
	val_data = train_data[i * num_val_samples : (i + 1) * num_val_samples]
	val_targets = train_target[i * num_val_samples : (i + 1) * num_val_samples]

	#将离散的数据集连接在一起
	partial_train_data = np.concatenate(
			[train_data[: i * num_val_samples],
			train_data[(i + 1) * num_val_samples : ]],
			axis = 0
			#沿着横轴连接
		)

	partial_train_targets =  np.concatenate(
			[train_target[: i * num_val_samples],
			train_target[(i + 1) * num_val_samples : ]],
			axis = 0
			#沿着横轴连接
		)
	#每经过一折,都要构建一次神经网络
	model = build_model()
	#输出数据太多(100 * 101 * 4),不让它输出,所以verbose = 0
	model.fit(partial_train_data,partial_train_targets,epochs = num_epochs,batch_size = 1,verbose = 0)
	val_mse,val_mae = model.evaluate(val_data,val_targets,verbose = 0)
	all_scores.append(val_mae)
	print ("第",i+1,"折,MSE:",val_mse,"MAE:",val_mae)


np.mean(all_scores)

model = build_model()
model.fit(train_data,train_target,epochs = 80,batch_size = 16,verbose = 0)

#导入测试数据
test_mse,test_mae = model.evaluate(test_data,test_target)
	

用Keras构建多层感知器进行波士顿房价预测
该程序应用到了交叉验证

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP