Background Story :
很多数学家一起去了一个酒吧,第一个要了一杯啤酒,第二个要了 1/2 杯啤酒, 第三个要了 1/4 杯啤酒, 第四个要了 1/8啤酒。 那个漂亮的bartender 翻了个白眼,给了他们两杯啤酒,说, 你们自己去分吧! 😍
Question: What is the Summation of
1+1/2+1/4+1/8+1/16... 1 +1/2+ 1/4 +1/8 +1/16 ... 1+1/2+1/4+1/8+1/16...
[caption id=“attachment_1733” align=“alignnone” width=“750”]
RitaE / Pixabay[/caption]
Solution:
This is a famous example of a Geometric series
KaTeX parse error: Expected 'EOF', got '·' at position 27: …+ 1/8 + 1/16 + ·̲ · ·
The fundamental idea is the base on the formula:
$ a^2 - b^2= (a-b)(a+b) $
$ 1-x^n= (1-x)(1+x+x^2 +x^3 +x4…xn-1) $
For infinity series we have :
11−r=1+r+r2+r3... \frac{1}{1-r}= 1+r+r^2 +r^3 ...1−r1=1+r+r2+r3...
So the General Formula would be:
∑rk=r1−r \sum r^k = \frac{r}{1-r} ∑rk=1−rr
Then we have the result to be 1+ 1 =2 Beers :
Now we can check if Python does a good job with computing the Series.
def SumofGeo(a,r,n):
sum=0
i=0
while i <n:
sum=sum+a
a=a*r
i=i+1
return sum
SumofGeo(1,1/2,5)
SumofGeo(1,1/2,10)
SumofGeo(1,1/2,100)
Python Output:
Out[6]: 1.9375
Out[7]: 1.998046875
Out[8]: 2.0
As we can see when n=5, the geometric sum of (1/2)^n is 1.93, when n=10, the sum is 1.99. when n=100, python assumed it is 2. Remember theoretically, it is not 2 yet, the sum is 2 when n approaches infinity!
So the Hot BarTender is smart!!
Cheers and Happy Studying! 🙇♀️
References: