继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

多线程在微服务API统计和健康检查中的使用

慕姐8265434
关注TA
已关注
手记 1309
粉丝 222
获赞 1065

API统计

在服务调用的时候,统计每个接口的调用次数,从而做到对接口的限流或统计。

在下面的代码中,使用了多线程的方式进行统计,主要使用了如下概念

  • 线程池 Executor

  • ConcurrentHashMap

  • CountDownLatch

其中列举了四种实现方式

  • 1 使用ConcurrentHashMap统计:不过该方法存在问题,统计的increase不是线程安全的,所以得到的结果不对

  • 2 使用CAS理念对ConcurrentHashMap进行改进,从而解决自增方法increase的问题

  • 3 使用Google的AtomicLongMap,原理同CAS一致,代码量小,比较优雅

  • 4 对HashMap加锁ReentrantReadWriteLock

本文代码示例:countdownlatch-demo

使用ConcurrentHashMap统计

package concurrent;import java.util.Map;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;/**
 * Java 并发实践- ConcurrentHashMap 与 CAS
 * API调用次数统计
 * 涉及概念: 多线程/线程池/ConcurrentHashMap/CountDownLatch
 * @author billjiang 
 * @createTime 2017-08-04
 */public class CounterDemo {    private final Map<String, Long> urlCounter = new ConcurrentHashMap<>();    /**
     * 接口调用次数,此方法存在问题,ConcurrentHashMap的原子方法是同步的,但increase方法没有同步
     * @param url
     * @return
     */
    public long increase(String url) {
        Long oldValue=urlCounter.get(url);
        Long newValue=(oldValue==null)?1l:oldValue+1;
        urlCounter.put(url,newValue);        return newValue;
    }    //获取调用次数
    public long getCount(String url){        return urlCounter.get(url);
    }    public static void main(String[] args) {
        ExecutorService executorService= Executors.newFixedThreadPool(10);        final CounterDemo counterDemo=new CounterDemo();        int callTime=100000;        final String url="http://localhost:8082/test";
        CountDownLatch countDownLatch=new CountDownLatch(callTime);        //模拟并发情况下的接口调用统计
        for (int i = 0; i < callTime; i++) {
            executorService.execute(new Runnable() {                @Override
                public void run() {
                    counterDemo.increase2(url);
                    countDownLatch.countDown();
                }
            });
        }        try{
            countDownLatch.await();
        }catch (InterruptedException e){
            e.printStackTrace();
        }

        executorService.shutdown();        //等待所有线程统计完成后输出调用次数
        System.out.println("调用次数:"+counterDemo.getCount(url));

    }
}

webp

ConcurrentHashMap

从结果上看,使用ConcurrentHashMap存在问题,没有输出预期结果,这是因为ConcurrentHashMap虽然是线程安全的,不过它的线程安全指的是getput等原子方法。而方法increase却不是线程安全的,当然可以通过对increase方法加锁(使用synchonized关键字),不过synchonized是悲观锁,其他线程要挂起等待,影响性能。可以使用类似乐观锁CAS对increase改进。

使用CAS对increase方法改进

关于CAS,可参考这篇文章:

深入浅出Java并发包—CAS机制

改进后的increase方法如下:

  /**
     * CAS 乐观锁/自旋
     * @param url
     * @return
     */
    public long increase2(String url){
        Long oldValue,newValue;        while(true){
            oldValue=urlCounter.get(url);            if(oldValue==null){
                newValue=1l;                //初始化成功,退出循环
                if(urlCounter.putIfAbsent(url,1l)==null)                    break;                //如果初始化失败,说明其他线程已经初始化了
            }else{
                newValue=oldValue+1;                //+1成功,退出循环
                if(urlCounter.replace(url,oldValue,newValue)){                    break;                    //如果+1失败,则说明其他线程已经修改过了旧值
                }
            }
        }        return newValue;
    }

不过还有更简单的方法,就是使用AtomicLongMap

使用Google的AtomicLongMap

AtomicLongMap<String> urlCounter3 = AtomicLongMap.create(); //线程安全,支持并发public long increase3(String url){     return urlCounter3.incrementAndGet(url);
}

传统做法,对HashMap加锁

 Map<String, Integer> map = new HashMap<String, Integer>(); //线程不安全
 ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); //为map2增加并发锁

 public long increase4(String url){    //对map2添加写锁,可以解决线程并发问题
        lock.writeLock().lock();    try{        if(map.containsKey(key)){            map.put(key, map.get(key)+1);
        }else{            map.put(key, 1);
        }
    }catch(Exception ex){
        ex.printStackTrace();
    }finally{
        lock.writeLock().unlock();
    }
 }

上文中提到的CountDownLatch的概念可参考:

webp

CountDownLatch

什么时候使用CountDownLatch

健康检查

场景:服务注册中心需要定时对服务提供者进行心跳检测,即定时调用服务提供者的特定借口,如果返回正常状态吗,则认为服务正常,否则,认为服务提供者异常,在注册中心显示为Down状态,如Consul的服务健康检查机制与之类似。

下面使用CountDownLatch和线程池模拟这种实现。

思路

首先定义一个应用程序启动类,它开始时启动了n个线程类,这些线程将检查外部系统并通知闭锁,并且启动类一直在闭锁上等待着。一旦验证和检查了所有外部服务,那么启动类恢复执行。

实现

BaseHealthChecker:基础健康检查类,实现Runable接口,包含CountDownLatch, ServiceName(服务名称),ServiceUp(服务状态),其中verifyService 为具体继承该类的子类要实现的方法。

package concurrent.health;import java.util.concurrent.CountDownLatch;public abstract class BaseHealthChecker implements Runnable {    private CountDownLatch countDownLatch;    private String serviceName;    private boolean serviceUp;    public BaseHealthChecker(String serviceName,CountDownLatch countDownLatch){        super();        this.serviceName=serviceName;        this.countDownLatch=countDownLatch;        this.serviceUp=false;
    }    @Override
    public void run() {        try{
            verifySerivce();
            serviceUp=true;
        }catch (Throwable t){
            t.printStackTrace(System.err);
            serviceUp=false;
        }finally {            if(countDownLatch!=null)
                countDownLatch.countDown();
        }

    }    public String getServiceName() {        return serviceName;
    }    public boolean isServiceUp() {        return serviceUp;
    }    //this method need to be implemented by all specific service checker
    public abstract void verifySerivce();

}

DatabaseHealthChecker: 数据库健康检查类

package concurrent.health;import java.util.concurrent.CountDownLatch;public class DataBaseHealthChecker extends BaseHealthChecker {    public DataBaseHealthChecker(CountDownLatch countDownLatch) {        super("database service", countDownLatch);
    }    @Override
    public void verifySerivce() {
        System.out.println("Checking " + this.getServiceName());        try {
            Thread.sleep(7000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(this.getServiceName() + " is UP");
    }
}

FileHealthChecker:文件服务健康检查(UserHealthChecker类似)

package concurrent.health;import java.util.concurrent.CountDownLatch;public class FileHealthChecker extends BaseHealthChecker {    public FileHealthChecker(CountDownLatch countDownLatch) {        super("file service", countDownLatch);
    }    @Override
    public void verifySerivce() {
        System.out.println("Checking " + this.getServiceName());        try {
            Thread.sleep(7000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(this.getServiceName() + " is UP");
    }
}

ApplicationStartupUtil:服务注册中心调用发起方的主类,在系统启动的时候发起健康检测请求。

package concurrent.health;import java.util.ArrayList;import java.util.List;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class ApplicationStartupUtil {    //list of service checker
    private static List<BaseHealthChecker> checkers;    //this latch will be used to wait on
    private static CountDownLatch countDownLatch;    //singleton
    private ApplicationStartupUtil() {

    }    private static ApplicationStartupUtil applicationStartupUtil = new ApplicationStartupUtil();    public static ApplicationStartupUtil getInstance() {        return applicationStartupUtil;
    }    public static boolean checkExternalServices() throws InterruptedException {        //init the latch with the number of service checks
        countDownLatch = new CountDownLatch(3);        //add all service checks into the list
        checkers = new ArrayList<>();
        checkers.add(new DataBaseHealthChecker(countDownLatch));
        checkers.add(new UserHealthChecker(countDownLatch));
        checkers.add(new FileHealthChecker(countDownLatch));        //start service checks using executor framework
        ExecutorService executor = Executors.newFixedThreadPool(checkers.size());        for (BaseHealthChecker checker : checkers) {
            executor.execute(checker);
        }        //now wait all services checked
        countDownLatch.await();        //service checkers are finished and now proceed startup
        for (BaseHealthChecker checker : checkers) {            if (!checker.isServiceUp()) {                return false;
            }
        }        return true;


    }
}

测试

测试方法

package concurrent.health;public class TestMain {    public static void main(String[] args) {        boolean result = false;        try {
            result = ApplicationStartupUtil.checkExternalServices();
        } catch (Exception ex) {
            ex.printStackTrace();
        }
        System.out.println("External services validation completed !! Result was :: " + result);
    }

}

结果

Checking database service
Checking file service
Checking user service
database service is UP
user service is UP
file service is UP
External services validation completed !! Result was :: true



作者:billJiang
链接:https://www.jianshu.com/p/5bb0ebde9800


打开App,阅读手记
1人推荐
发表评论
随时随地看视频慕课网APP