API统计
在服务调用的时候,统计每个接口的调用次数,从而做到对接口的限流或统计。
在下面的代码中,使用了多线程的方式进行统计,主要使用了如下概念
线程池 Executor
ConcurrentHashMap
CountDownLatch
其中列举了四种实现方式
1 使用ConcurrentHashMap统计:不过该方法存在问题,统计的increase不是线程安全的,所以得到的结果不对
2 使用CAS理念对ConcurrentHashMap进行改进,从而解决自增方法increase的问题
3 使用Google的AtomicLongMap,原理同CAS一致,代码量小,比较优雅
4 对HashMap加锁ReentrantReadWriteLock
本文代码示例:countdownlatch-demo
使用ConcurrentHashMap统计
package concurrent;import java.util.Map;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;/** * Java 并发实践- ConcurrentHashMap 与 CAS * API调用次数统计 * 涉及概念: 多线程/线程池/ConcurrentHashMap/CountDownLatch * @author billjiang * @createTime 2017-08-04 */public class CounterDemo { private final Map<String, Long> urlCounter = new ConcurrentHashMap<>(); /** * 接口调用次数,此方法存在问题,ConcurrentHashMap的原子方法是同步的,但increase方法没有同步 * @param url * @return */ public long increase(String url) { Long oldValue=urlCounter.get(url); Long newValue=(oldValue==null)?1l:oldValue+1; urlCounter.put(url,newValue); return newValue; } //获取调用次数 public long getCount(String url){ return urlCounter.get(url); } public static void main(String[] args) { ExecutorService executorService= Executors.newFixedThreadPool(10); final CounterDemo counterDemo=new CounterDemo(); int callTime=100000; final String url="http://localhost:8082/test"; CountDownLatch countDownLatch=new CountDownLatch(callTime); //模拟并发情况下的接口调用统计 for (int i = 0; i < callTime; i++) { executorService.execute(new Runnable() { @Override public void run() { counterDemo.increase2(url); countDownLatch.countDown(); } }); } try{ countDownLatch.await(); }catch (InterruptedException e){ e.printStackTrace(); } executorService.shutdown(); //等待所有线程统计完成后输出调用次数 System.out.println("调用次数:"+counterDemo.getCount(url)); } }
ConcurrentHashMap
从结果上看,使用ConcurrentHashMap存在问题,没有输出预期结果,这是因为ConcurrentHashMap虽然是线程安全的,不过它的线程安全指的是get
和put
等原子方法。而方法increase却不是线程安全的,当然可以通过对increase方法加锁(使用synchonized关键字),不过synchonized是悲观锁,其他线程要挂起等待,影响性能。可以使用类似乐观锁CAS对increase改进。
使用CAS对increase方法改进
关于CAS,可参考这篇文章:
改进后的increase方法如下:
/** * CAS 乐观锁/自旋 * @param url * @return */ public long increase2(String url){ Long oldValue,newValue; while(true){ oldValue=urlCounter.get(url); if(oldValue==null){ newValue=1l; //初始化成功,退出循环 if(urlCounter.putIfAbsent(url,1l)==null) break; //如果初始化失败,说明其他线程已经初始化了 }else{ newValue=oldValue+1; //+1成功,退出循环 if(urlCounter.replace(url,oldValue,newValue)){ break; //如果+1失败,则说明其他线程已经修改过了旧值 } } } return newValue; }
不过还有更简单的方法,就是使用AtomicLongMap
使用Google的AtomicLongMap
AtomicLongMap<String> urlCounter3 = AtomicLongMap.create(); //线程安全,支持并发public long increase3(String url){ return urlCounter3.incrementAndGet(url); }
传统做法,对HashMap加锁
Map<String, Integer> map = new HashMap<String, Integer>(); //线程不安全 ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); //为map2增加并发锁 public long increase4(String url){ //对map2添加写锁,可以解决线程并发问题 lock.writeLock().lock(); try{ if(map.containsKey(key)){ map.put(key, map.get(key)+1); }else{ map.put(key, 1); } }catch(Exception ex){ ex.printStackTrace(); }finally{ lock.writeLock().unlock(); } }
上文中提到的CountDownLatch的概念可参考:
CountDownLatch
健康检查
场景:服务注册中心需要定时对服务提供者进行心跳检测,即定时调用服务提供者的特定借口,如果返回正常状态吗,则认为服务正常,否则,认为服务提供者异常,在注册中心显示为Down
状态,如Consul的服务健康检查机制与之类似。
下面使用CountDownLatch和线程池模拟这种实现。
思路
首先定义一个应用程序启动类,它开始时启动了n个线程类,这些线程将检查外部系统并通知闭锁,并且启动类一直在闭锁上等待着。一旦验证和检查了所有外部服务,那么启动类恢复执行。
实现
BaseHealthChecker:基础健康检查类,实现Runable接口,包含CountDownLatch, ServiceName(服务名称),ServiceUp(服务状态),其中verifyService 为具体继承该类的子类要实现的方法。
package concurrent.health;import java.util.concurrent.CountDownLatch;public abstract class BaseHealthChecker implements Runnable { private CountDownLatch countDownLatch; private String serviceName; private boolean serviceUp; public BaseHealthChecker(String serviceName,CountDownLatch countDownLatch){ super(); this.serviceName=serviceName; this.countDownLatch=countDownLatch; this.serviceUp=false; } @Override public void run() { try{ verifySerivce(); serviceUp=true; }catch (Throwable t){ t.printStackTrace(System.err); serviceUp=false; }finally { if(countDownLatch!=null) countDownLatch.countDown(); } } public String getServiceName() { return serviceName; } public boolean isServiceUp() { return serviceUp; } //this method need to be implemented by all specific service checker public abstract void verifySerivce(); }
DatabaseHealthChecker: 数据库健康检查类
package concurrent.health;import java.util.concurrent.CountDownLatch;public class DataBaseHealthChecker extends BaseHealthChecker { public DataBaseHealthChecker(CountDownLatch countDownLatch) { super("database service", countDownLatch); } @Override public void verifySerivce() { System.out.println("Checking " + this.getServiceName()); try { Thread.sleep(7000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(this.getServiceName() + " is UP"); } }
FileHealthChecker:文件服务健康检查(UserHealthChecker类似)
package concurrent.health;import java.util.concurrent.CountDownLatch;public class FileHealthChecker extends BaseHealthChecker { public FileHealthChecker(CountDownLatch countDownLatch) { super("file service", countDownLatch); } @Override public void verifySerivce() { System.out.println("Checking " + this.getServiceName()); try { Thread.sleep(7000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(this.getServiceName() + " is UP"); } }
ApplicationStartupUtil:服务注册中心调用发起方的主类,在系统启动的时候发起健康检测请求。
package concurrent.health;import java.util.ArrayList;import java.util.List;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class ApplicationStartupUtil { //list of service checker private static List<BaseHealthChecker> checkers; //this latch will be used to wait on private static CountDownLatch countDownLatch; //singleton private ApplicationStartupUtil() { } private static ApplicationStartupUtil applicationStartupUtil = new ApplicationStartupUtil(); public static ApplicationStartupUtil getInstance() { return applicationStartupUtil; } public static boolean checkExternalServices() throws InterruptedException { //init the latch with the number of service checks countDownLatch = new CountDownLatch(3); //add all service checks into the list checkers = new ArrayList<>(); checkers.add(new DataBaseHealthChecker(countDownLatch)); checkers.add(new UserHealthChecker(countDownLatch)); checkers.add(new FileHealthChecker(countDownLatch)); //start service checks using executor framework ExecutorService executor = Executors.newFixedThreadPool(checkers.size()); for (BaseHealthChecker checker : checkers) { executor.execute(checker); } //now wait all services checked countDownLatch.await(); //service checkers are finished and now proceed startup for (BaseHealthChecker checker : checkers) { if (!checker.isServiceUp()) { return false; } } return true; } }
测试
测试方法
package concurrent.health;public class TestMain { public static void main(String[] args) { boolean result = false; try { result = ApplicationStartupUtil.checkExternalServices(); } catch (Exception ex) { ex.printStackTrace(); } System.out.println("External services validation completed !! Result was :: " + result); } }
结果
Checking database service Checking file service Checking user service database service is UP user service is UP file service is UP External services validation completed !! Result was :: true
作者:billJiang
链接:https://www.jianshu.com/p/5bb0ebde9800