继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Elasticsearch 分词器

胡说叔叔
关注TA
已关注
手记 458
粉丝 130
获赞 581

无论是内置的分析器(analyzer),还是自定义的分析器(analyzer),都由三种构件块组成的:character filters , tokenizers , token filters。

内置的analyzer将这些构建块预先打包到适合不同语言和文本类型的analyzer中。

Character filters (字符过滤器)

字符过滤器以字符流的形式接收原始文本,并可以通过添加、删除或更改字符来转换该流。

举例来说,一个字符过滤器可以用来把阿拉伯数字(٠‎١٢٣٤٥٦٧٨‎٩)‎转成成Arabic-Latin的等价物(0123456789)。

一个分析器可能有0个或多个字符过滤器,它们按顺序应用。

(PS:类似Servlet中的过滤器,或者拦截器,想象一下有一个过滤器链)

Tokenizer (分词器)

一个分词器接收一个字符流,并将其拆分成单个token (通常是单个单词),并输出一个token流。例如,一个whitespace分词器当它看到空白的时候就会将文本拆分成token。它会将文本“Quick brown fox!”转换为[Quick, brown, fox!]

(PS:Tokenizer 负责将文本拆分成单个token ,这里token就指的就是一个一个的单词。就是一段文本被分割成好几部分,相当于Java中的字符串的 split )

分词器还负责记录每个term的顺序或位置,以及该term所表示的原单词的开始和结束字符偏移量。(PS:文本被分词后的输出是一个term数组)

一个分析器必须只能有一个分词器

Token filters (token过滤器)

token过滤器接收token流,并且可能会添加、删除或更改tokens。

例如,一个lowercase token filter可以将所有的token转成小写。stop token filter可以删除常用的单词,比如 the 。synonym token filter可以将同义词引入token流。

不允许token过滤器更改每个token的位置或字符偏移量。

一个分析器可能有0个或多个token过滤器,它们按顺序应用。

小结&回顾

  • analyzer(分析器)是一个包,这个包由三部分组成,分别是:character filters (字符过滤器)、tokenizer(分词器)、token filters(token过滤器)

  • 一个analyzer可以有0个或多个character filters

  • 一个analyzer有且只能有一个tokenizer

  • 一个analyzer可以有0个或多个token filters

  • character filter 是做字符转换的,它接收的是文本字符流,输出也是字符流

  • tokenizer 是做分词的,它接收字符流,输出token流(文本拆分后变成一个一个单词,这些单词叫token)

  • token filter 是做token过滤的,它接收token流,输出也是token流

  • 由此可见,整个analyzer要做的事情就是将文本拆分成单个单词,文本 ---->  字符  ---->  token

 

 这就好比是拦截器

 

 

1.  测试分析器

analyze API 是一个工具,可以帮助我们查看分析的过程。(PS:类似于执行计划)

复制代码

curl -X POST "192.168.1.134:9200/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "whitespace",  "text":     "The quick brown fox."}'curl -X POST "192.168.1.134:9200/_analyze" -H 'Content-Type: application/json' -d'{  "tokenizer": "standard",  "filter":  [ "lowercase", "asciifolding" ],  "text":      "Is this déja vu?"}'

复制代码

输出:

复制代码

{    "tokens":[
        {            "token":"The",            "start_offset":0,            "end_offset":3,            "type":"word",            "position":0
        },
        {            "token":"quick",            "start_offset":4,            "end_offset":9,            "type":"word",            "position":1
        },
        {            "token":"brown",            "start_offset":10,            "end_offset":15,            "type":"word",            "position":2
        },
        {            "token":"fox.",            "start_offset":16,            "end_offset":20,            "type":"word",            "position":3
        }
    ]
}

复制代码

可以看到,对于每个term,记录了它的位置和偏移量

2.  Analyzer

2.1.  配置内置的分析器

内置的分析器不用任何配置就可以直接使用。当然,默认配置是可以更改的。例如,standard分析器可以配置为支持停止字列表:

复制代码

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "std_english": { 
          "type":      "standard",          "stopwords": "_english_"
        }
      }
    }
  },  "mappings": {    "_doc": {      "properties": {        "my_text": {          "type":     "text",          "analyzer": "standard", 
          "fields": {            "english": {              "type":     "text",              "analyzer": "std_english" 
            }
          }
        }
      }
    }
  }
}'

复制代码

在这个例子中,我们基于standard分析器来定义了一个std_englisth分析器,同时配置为删除预定义的英语停止词列表。后面的mapping中,定义了my_text字段用standard,my_text.english用std_english分析器。因此,下面两个的分词结果会是这样的:

复制代码

curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{  "field": "my_text", 
  "text": "The old brown cow"}'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{  "field": "my_text.english", 
  "text": "The old brown cow"}'

复制代码

第一个由于用的standard分析器,因此分词的结果是:[ the, old, brown, cow ]

第二个用std_english分析的结果是:[ old, brown, cow ]

2.2.  Standard Analyzer (默认)

如果没有特别指定的话,standard 是默认的分析器。它提供了基于语法的标记化(基于Unicode文本分割算法),适用于大多数语言。

例如:

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "standard",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

上面例子中,那段文本将会输出如下terms:

[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]

2.2.1.  配置

标准分析器接受下列参数:

  • max_token_length  :  最大token长度,默认255

  • stopwords  :  预定义的停止词列表,如_english_ 或 包含停止词列表的数组,默认是 _none_

  • stopwords_path  :  包含停止词的文件路径

2.2.2.  示例配置

复制代码

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "my_english_analyzer": {          "type": "standard",          "max_token_length": 5,          "stopwords": "_english_"
        }
      }
    }
  }
}'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "my_english_analyzer",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

复制代码

以上输出下列terms:

[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]

2.2.3.  定义

standard分析器由下列两部分组成:

Tokenizer

  • Standard Tokenizer

Token Filters

  • Standard Token Filter

  • Lower Case Token Filter

  • Stop Token Filter (默认被禁用)

你还可以自定义

复制代码

curl -X PUT "localhost:9200/standard_example" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "rebuilt_standard": {          "tokenizer": "standard",          "filter": [            "lowercase"       
          ]
        }
      }
    }
  }
}'

复制代码

2.3.  Simple Analyzer

 simple 分析器当它遇到只要不是字母的字符,就将文本解析成term,而且所有的term都是小写的。例如:

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "simple",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

输入结果如下:

[ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]

2.3.1.  自定义

复制代码

curl -X PUT "localhost:9200/simple_example" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "rebuilt_simple": {          "tokenizer": "lowercase",          "filter": [         
          ]
        }
      }
    }
  }
}'

复制代码

2.4.  Whitespace Analyzer

whitespace 分析器,当它遇到空白字符时,就将文本解析成terms

示例:

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "whitespace",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

输出结果如下:

[ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]

2.5.  Stop Analyzer

 stop 分析器 和 simple 分析器很像,唯一不同的是,stop 分析器增加了对删除停止词的支持。默认用的停止词是 _englisht_

(PS:意思是,假设有一句话“this is a apple”,并且假设“this” 和 “is”都是停止词,那么用simple的话输出会是[ this , is , a , apple ],而用stop输出的结果会是[ a , apple ],到这里就看出二者的区别了,stop 不会输出停止词,也就是说它不认为停止词是一个term)

(PS:所谓的停止词,可以理解为分隔符)

2.5.1.  示例输出

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{    "analyzer": "stop",    "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

输出

[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]

2.5.2.  配置

stop 接受以下参数:

  • stopwords  :  一个预定义的停止词列表(比如,_englisht_)或者是一个包含停止词的列表。默认是 _english_

  • stopwords_path  :  包含停止词的文件路径。这个路径是相对于Elasticsearch的config目录的一个路径

2.5.3.  示例配置

复制代码

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "my_stop_analyzer": {          "type": "stop",          "stopwords": ["the", "over"]
        }
      }
    }
  }
}'

复制代码

上面配置了一个stop分析器,它的停止词有两个:the 和 over

curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "my_stop_analyzer",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

基于以上配置,这个请求输入会是这样的:

[ quick, brown, foxes, jumped, lazy, dog, s, bone ]

2.6.  Pattern Analyzer

Java正则表达式来将文本分割成terms,默认的正则表达式是\W+(非单词字符)

2.6.1.  示例输出

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "pattern",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

由于默认按照非单词字符分割,因此输出会是这样的:

[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]

2.6.2.  配置

pattern 分析器接受如下参数:

  • pattern  :  一个Java正则表达式,默认 \W+

  • flags  :  Java正则表达式flags。比如:CASE_INSENSITIVE 、COMMENTS

  • lowercase  :  是否将terms全部转成小写。默认true

  • stopwords  :  一个预定义的停止词列表,或者包含停止词的一个列表。默认是 _none_

  • stopwords_path  :  停止词文件路径

2.6.3.  示例配置

复制代码

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "my_email_analyzer": {          "type":      "pattern",          "pattern":   "\\W|_", 
          "lowercase": true
        }
      }
    }
  }
}'

复制代码

上面的例子中配置了按照非单词字符或者下划线分割,并且输出的term都是小写

curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{  "analyzer": "my_email_analyzer",  "text": "John_Smith@foo-bar.com"}'

因此,基于以上配置,本例输出如下:

[ john, smith, foo, bar, com ]

2.7.  Language Analyzers

支持不同语言环境下的文本分析。内置(预定义)的语言有:arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, finnish, french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian, lithuanian, norwegian, persian, portuguese, romanian, russian, sorani, spanish, swedish, turkish, thai

2.8.  自定义Analyzer

前面也说过,一个分析器由三部分构成:

  • zero or more character filters

  • a tokenizer

  • zero or more token filters

2.8.1.  实例配置

复制代码

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{  "settings": {    "analysis": {      "analyzer": {        "my_custom_analyzer": {          "type":      "custom", 
          "tokenizer": "standard",          "char_filter": [            "html_strip"
          ],          "filter": [            "lowercase",            "asciifolding"
          ]
        }
      }
    }
  }
}'

复制代码

3.  Tokenizer 

3.1.  Standard Tokenizer

curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{  "tokenizer": "standard",  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'

4.  中文分词器

4.1.  smartCN

一个简单的中文或中英文混合文本的分词器

这个插件提供 smartcn analyzer 和 smartcn_tokenizer tokenizer,而且不需要配置

# 安装
bin/elasticsearch-plugin install analysis-smartcn
# 卸载
bin/elasticsearch-plugin remove analysis-smartcn

下面测试一下

可以看到,“今天天气真好”用smartcn分析器的结果是:

[ 今天 , 天气 , 真 , 好 ]

如果用standard分析器的话,结果会是:

[ 今 ,天 ,气 , 真 , 好 ]

4.2.  IK分词器

下载对应的版本,这里我下载6.5.3

然后,在Elasticsearch的plugins目录下建一个ik目录,将刚才下载的文件解压到该目录下

最后,重启Elasticsearch

接下来,还是用刚才那句话来测试一下

输出结果如下:

复制代码

{    "tokens": [
        {            "token": "今天天气",            "start_offset": 0,            "end_offset": 4,            "type": "CN_WORD",            "position": 0
        },
        {            "token": "今天",            "start_offset": 0,            "end_offset": 2,            "type": "CN_WORD",            "position": 1
        },
        {            "token": "天天",            "start_offset": 1,            "end_offset": 3,            "type": "CN_WORD",            "position": 2
        },
        {            "token": "天气",            "start_offset": 2,            "end_offset": 4,            "type": "CN_WORD",            "position": 3
        },
        {            "token": "真好",            "start_offset": 4,            "end_offset": 6,            "type": "CN_WORD",            "position": 4
        }
    ]
}

复制代码

显然比smartcn要更好一点


打开App,阅读手记
1人推荐
发表评论
随时随地看视频慕课网APP