继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

线性变换及其与矩阵的关系——线性代数的本质(三)

程序员在深圳
关注TA
已关注
手记 34
粉丝 26
获赞 48

图片描述

unfortunately, no one can be told what the matrix is. you have to see it for yourself.

– morpheus

线性变换 linear transformation

通常 变换(transformation) 相当于函数(function)— f(x)f(x)f(x) ,给它一定的输入,它会产生相应的输出。在线性代数的场景中,变换(transformation)可以想象为输入某个向量,然后输出另一个向量的过程。

如果是这样,为什么使用变换(transformation)这个词,而不直接使用函数(function)呢?因为变换有移动的含义在里面,而更好的理解输入向量到输出向量的过程的方式是移动向量

如果一个变换(transformation)接收一个输入向量,并输出一个新的向量,我们可以想象它是从输入的向量 (vector)移动到了输出的向量(vector)。然后我们把这种变换当做一个整体来理解,想象整个平面内任何向量(vectors)都随着这个变换(transformation)发生了各自的移动,等同于平面内所有的点随着该变换(transformation)移动到了另一个点。

而线性代数中的线性变换(linear transformation)是一种更易理解的、特殊的变换,它具备两个的条件:

  1. 向量在变换后仍然是直线,不会被扭曲;
  2. 原点不会发生移动。

把一个平面想象为彼此间均匀且平行的网格,**线性变换会让网格中的线条依然保持平行且均匀。**例如下图是细实线组成的空间变换到粗实线组成的空间后的样子:

图片描述

理解了线性变换后,我们如何用数学的方式来表示它呢?这样我们就可以把这个“公式”制作成计算机程序,然后输入一个向量的坐标,它就会给我们返回变换后的向量的坐标。

由于格式显示异常,文章后续部分请查看原文链接

打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP

热门评论

3blue1brown!!!!!!!!!!!!

查看全部评论