一实例
将模型的生成值加入到直方图数据中,将损失值写入到标量数据中
二 代码
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plotdata = { "batchsize":[], "loss":[] } def moving_average(a, w=10): if len(a) < w: return a[:] return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)] #生成模拟数据 train_X = np.linspace(-1, 1, 100) train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声 #图形显示 plt.plot(train_X, train_Y, 'ro', label='Original data') plt.legend() plt.show() tf.reset_default_graph() # 创建模型 # 占位符 X = tf.placeholder("float") Y = tf.placeholder("float") # 模型参数 W = tf.Variable(tf.random_normal([1]), name="weight") b = tf.Variable(tf.zeros([1]), name="bias") # 前向结构 z = tf.multiply(X, W)+ b tf.summary.histogram('z',z)#将预测值以直方图显示 #反向优化 cost =tf.reduce_mean( tf.square(Y - z)) tf.summary.scalar('loss_function', cost)#将损失以标量显示 learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # 初始化变量 init = tf.global_variables_initializer() #参数设置 training_epochs = 20 display_step = 2 # 启动session with tf.Session() as sess: sess.run(init) merged_summary_op = tf.summary.merge_all()#合并所有summary #创建summary_writer,用于写文件 summary_writer = tf.summary.FileWriter('log/mnist_with_summaries',sess.graph) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) #生成summary summary_str = sess.run(merged_summary_op,feed_dict={X: x, Y: y}); summary_writer.add_summary(summary_str, epoch);#将summary 写入文件 #显示训练中的详细信息 if epoch % display_step == 0: loss = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) print ("Epoch:", epoch+1, "cost=", loss,"W=", sess.run(W), "b=", sess.run(b)) if not (loss == "NA" ): plotdata["batchsize"].append(epoch) plotdata["loss"].append(loss) print (" Finished!") print ("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b)) #print ("cost:",cost.eval({X: train_X, Y: train_Y})) #图形显示 plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show() plotdata["avgloss"] = moving_average(plotdata["loss"]) plt.figure(1) plt.subplot(211) plt.plot(plotdata["batchsize"], plotdata["avgloss"], 'b--') plt.xlabel('Minibatch number') plt.ylabel('Loss') plt.title('Minibatch run vs. Training loss') plt.show() print ("x=0.2,z=", sess.run(z, feed_dict={X: 0.2}))
三 运行结果
四 在cmd中执行如下命令
注意路径写法
E:\AI\TensorFlow\code\code\log\mnist_with_summaries>tensorboard --logdir=.
另外一种写法
五 可视化结果
六 参考
https://blog.csdn.net/sinat_30651073/article/details/78747996
https://blog.csdn.net/silver_666/article/details/78563818
http://www.tensorfly.cn/