继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

opencv自带例子学习-图像的傅里叶变换

慕标5832272
关注TA
已关注
手记 1222
粉丝 229
获赞 1001

webp

image.png

有梯子的同学可以点击链查看详情。

没有梯子,可以阅读知乎上大佬们的解释,很多答案都很好

简单地说,首先傅里叶变换是一种变换公式,作用是把信号在时域(或者空域)和频域间的转换。不同应用场景具体分类又不一样,比如有时域上的电信号转到频域,这是连续的。有图像的空域变换到频域,这是离散的,即下面要学习的程序例子。

关于图像处理里面的离散傅里叶变换,同样可以看看知乎上面的回答

下面直接上代码

//discrete fourier tranform, 离散傅里叶变换//头文件#include "opencv2/core.hpp"     //Core functionality,核心函数相关#include "opencv2/imgproc.hpp"  //Image processing, 图像处理相关#include "opencv2/imgcodecs.hpp"//Image file reading and writing, 图像的加载和写出相关#include "opencv2/highgui.hpp"  //High-level GUI,图形界面GUI相关#include <iostream>/**
 * 程序流程
 * 1、加载图像,格式为灰度图
 * 2、获取图片dft变换的最佳大小
 * 3、边框加0的方式填充图片,即非0部分为dft变换的最佳大小 
 * 4、创建数组储存图像实部虚部,且合并到complexI
 * 5、傅里叶变换 dft(complexI, complexI)
 * 6、重新分离实部虚部,并且计算幅度
 * 7、将幅度映射到对数域
 * 8、以图像中心为原点划分象限,每个象限创建一个ROI
 * 9、对角象限互换
 * 10、显示结果
 *///命名空间using namespace cv;
using namespace std;//帮助函数,输出程序的信息static void help(void)
{
    cout << endl
        <<  "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl   //离散傅里叶变换示例
        <<  "The dft of an image is taken and it's power spectrum is displayed."          << endl   //离散傅里叶变换后显示功率谱
        <<  "Usage:"                                                                      << endl
        <<  "./discrete_fourier_transform [image_name -- default ../data/lena.jpg]"       << endl;  //默认加载图片路径}int main(int argc, char ** argv)
{
    help();    //获取图像路径(文件名),命令行输入否则默认
    const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";    //加载图像,方式为加载灰度图
    Mat I = imread(filename, IMREAD_GRAYSCALE);    //检查是否成功加载
    if( I.empty()){
        cout << "Error opening image" << endl;        return -1;
    }//! [expand]
    Mat padded;                            
    //expand input image to optimal size, 将输入图像扩展到最佳大小
    int m = getOptimalDFTSize( I.rows );    int n = getOptimalDFTSize( I.cols ); 

    // on the border add zero values,在边框上添加零值,使用copyMakeBorder函数
    copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));//! [expand]//! [complex_and_real] 实部和虚部
    Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)}; //Mat 数组储存图像的实部和虚部
    Mat complexI; 
    merge(planes, 2, complexI);         // Add to the expanded another plane with zeros,用零添加到扩展的另一平面//! [complex_and_real]//! [dft]
    //离散傅里叶变换
    dft(complexI, complexI);            // this way the result may fit in the source matrix,这种方式的结果可能适合在源矩阵//! [dft]

    // compute the magnitude and switch to logarithmic scale,计算幅度并映射到对数刻度
    //公式 => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)) //! [magnitude] 幅度
    split(complexI, planes);                   // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)),分离实部和虚部
    magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude,计算幅度且存放到planes[0]
    Mat magI = planes[0]; //幅度 //! [magnitude]//! [log]
    magI += Scalar::all(1);                    // switch to logarithmic scale,映射到对数刻度
    log(magI, magI);//! [log]//! [crop_rearrange]裁剪重新排列
    // crop the spectrum, if it has an odd number of rows or columns, 裁剪频谱, 如果它有奇数行或列数
    magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));    // rearrange the quadrants of Fourier image  so that the origin is at the image center
    //重新排列傅立叶图像的象限, 使原点位于图像中心
    int cx = magI.cols/2;    int cy = magI.rows/2;    //每个象限新建一个ROI
    Mat q0(magI, Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant, 左上,第二象限
    Mat q1(magI, Rect(cx, 0, cx, cy));  // Top-Right, 右上,第一象限
    Mat q2(magI, Rect(0, cy, cx, cy));  // Bottom-Left,左下,第三象限
    Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right, 右下,第四象限

    Mat tmp;                           // swap quadrants (Top-Left with Bottom-Right),交换左上和右下象限
    q0.copyTo(tmp);
    q3.copyTo(q0);
    tmp.copyTo(q3);

    q1.copyTo(tmp);                    // swap quadrant (Top-Right with Bottom-Left),交换右上和左下象限
    q2.copyTo(q1);
    tmp.copyTo(q2);//! [crop_rearrange]//! [normalize]
    //归一化,像素值都映射到[0,1]之间
    normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
                                            // viewable image form (float between values 0 and 1).//! [normalize]

    //显示结果
    imshow("Input Image"       , I   );    // Show the result
    imshow("spectrum magnitude", magI);
    waitKey();    return 0;
}/**
 * 要点总结:
 * 加载图片格式为灰度图
 * getOptimalDFTSize()函数获取最佳大小
 * copyMakeBorder()加框函数
 * 实部虚部
 * merge()合并函数
 * dft()函数
 * 幅度公式sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)
 * split()分离函数
 * magnitude()计算幅度
 * log()对数函数
 * normalize()归一化函数
 * /

下面放上所用函数的声明信息

int cv::getOptimalDFTSize   (   int     vecsize )
void cv::copyMakeBorder ( InputArray  src, 
  OutputArray  dst, 
  int  top, 
  int  bottom, 
  int  left, 
  int  right, 
  int  borderType, 
  const Scalar &  value = Scalar()  
 )
void cv::merge ( const Mat *  mv, 
  size_t  count, 
  OutputArray  dst  
 )
void cv::magnitude ( InputArray  x, 
  InputArray  y, 
  OutputArray  magnitude  
 )
softfloat cv::log ( const softfloat &  a )
void cv::normalize ( InputArray  src, 
  InputOutputArray  dst, 
  double  alpha = 1, 
  double  beta = 0, 
  int  norm_type = NORM_L2, 
  int  dtype = -1, 
  InputArray  mask = noArray()  
 )



作者:芒果浩明
链接:https://www.jianshu.com/p/651565594023


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP