继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Python学习笔记6-sklearn

慕神8447489
关注TA
已关注
手记 1259
粉丝 174
获赞 956

sklearn 简介

  • 机器学习 Machine Learning

    • 监督学习 supervised learning;

    • 非监督学习 unsupervised learning;

    • 半监督学习 semi-supervised learning;

    • 强化学习 reinforcement learning;

    • 遗传算法 genetic algorithm.

  • sklearn 安装

    • Anaconda安装

    • pip安装

sklearn 一般使用

  • 选择学习方法

  • 通用学习方式

  • sklearn 强大数据库

  • sklearn 常用属性与功能

选择学习方法
  • 看图选方法

常用算法可分为四类:分类,回归,聚类,降维。


webp

img1

通用学习方式
  • 要点

  • 创建数据

  • 建立模型-训练-预测

要点:用KNN classifier,对Iris数据集进行分类

创建数据:

from sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target

print(iris_X[:2, :])
print(iris_y)"""
[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
 """
 
 X_train, X_test, y_train, y_test = train_test_split(
    iris_X, iris_y, test_size=0.3)
    
print(y_train)"""
[2 1 0 1 0 0 1 1 1 1 0 0 1 2 1 1 1 0 2 2 1 1 1 1 0 2 2 0 2 2 2 2 2 0 1 2 2
 2 2 2 2 0 1 2 2 1 1 1 0 0 1 2 0 1 0 1 0 1 2 2 0 1 2 2 2 1 1 1 1 2 2 2 1 0
 1 1 0 0 0 2 0 1 0 0 1 2 0 2 2 0 0 2 2 2 1 2 0 0 2 1 2 0 0 1 2]
 """

建立模型-训练-预测:

knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
print(knn.predict(X_test))
print(y_test)"""
[2 0 0 1 2 2 0 0 0 1 2 2 1 1 2 1 2 1 0 0 0 2 1 2 0 0 0 0 1 0 2 0 0 2 1 0 1
 0 0 1 0 1 2 0 1]
[2 0 0 1 2 1 0 0 0 1 2 2 1 1 2 1 2 1 0 0 0 2 1 2 0 0 0 0 1 0 2 0 0 2 1 0 1
 0 0 1 0 1 2 0 1]
 """
sklearn 强大数据库
  • 要点

  • 导入数据-训练模型

  • 创建虚拟数据-可视化

要点:使用 sklearn 读取数据库和生成虚拟的数据,例如用来训练线性回归模型的数据


webp

img1


webp

img2

sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)[source]

导入数据-训练模型:

from __future__ import print_functionfrom sklearn import datasetsfrom sklearn.linear_model import LinearRegressionimport matplotlib.pyplot as plt

loaded_data = datasets.load_boston()
data_X = loaded_data.data
data_y = loaded_data.target

model = LinearRegression()
model.fit(data_X, data_y)

print(model.predict(data_X[:4, :]))
print(data_y[:4])

“”“
[ 30.00821269  25.0298606   30.5702317   28.60814055]
[ 24.   21.6  34.7  33.4]
”“”

创建虚拟数据-可视化:

X, y = datasets.make_regression(n_samples=100, n_features=1, n_targets=1, noise=10)

plt.scatter(X, y)
plt.show()

webp

img3

X, y = datasets.make_regression(n_samples=100, n_features=1, n_targets=1, noise=50)
plt.scatter(X, y)
plt.show()

webp

img4

sklearn 常用属性与功能
  • model.coef_ :输出模型的斜率

  • model.intercept_ :输出模型的截距(与y轴的交点)

  • model.get_params() :取出之前定义的参数

  • model.score(data_X, data_y) :对 Model 用 R^2 的方式进行打分

训练和预测:

from sklearn import datasetsfrom sklearn.linear_model import LinearRegression

loaded_data = datasets.load_boston()
data_X = loaded_data.data
data_y = loaded_data.target

model = LinearRegression()

model.fit(data_X, data_y)

print(model.predict(data_X[:4, :]))"""
[ 30.00821269  25.0298606   30.5702317   28.60814055]
"""

参数和分数:

print(model.coef_)
print(model.intercept_)"""
[ -1.07170557e-01   4.63952195e-02   2.08602395e-02   2.68856140e+00
  -1.77957587e+01   3.80475246e+00   7.51061703e-04  -1.47575880e+00
   3.05655038e-01  -1.23293463e-02  -9.53463555e-01   9.39251272e-03
  -5.25466633e-01]
36.4911032804
"""print(model.get_params())"""
{'copy_X': True, 'normalize': False, 'n_jobs': 1, 'fit_intercept': True}
"""print(model.score(data_X, data_y)) # R^2 coefficient of determination"""
0.740607742865
"""

sklearn 高级使用

  • 正规化 Normalization

  • 检查神经网络(Evaluation)

  • 交叉验证 1 Cross-validation

  • 交叉验证 2 Cross-validation

  • 交叉验证 3 Cross-validation

  • 保存模型

正规化 Normalization
  • 数据标准化

  • 数据标准化对机器学习成效的影响

数据标准化:

from sklearn import preprocessing #标准化数据模块import numpy as np#建立Arraya = np.array([[10, 2.7, 3.6],
              [-100, 5, -2],
              [120, 20, 40]], dtype=np.float64)#将normalized后的a打印出print(preprocessing.scale(a))# [[ 0.         -0.85170713 -0.55138018]#  [-1.22474487 -0.55187146 -0.852133  ]#  [ 1.22474487  1.40357859  1.40351318]]

数据标准化对机器学习成效的影响:

# 标准化数据模块from sklearn import preprocessing 
import numpy as np# 将资料分割成train与test的模块from sklearn.model_selection import train_test_split# 生成适合做classification资料的模块from sklearn.datasets.samples_generator import make_classification 

# Support Vector Machine中的Support Vector Classifierfrom sklearn.svm import SVC 

# 可视化数据的模块import matplotlib.pyplot as plt 

#生成具有2种属性的300笔数据X, y = make_classification(
    n_samples=300, n_features=2,
    n_redundant=0, n_informative=2, 
    random_state=22, n_clusters_per_class=1, 
    scale=100)#可视化数据plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()

webp

img1

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = SVC()
clf.fit(X_train, y_train)print(clf.score(X_test, y_test))# 0.477777777778

webp

img1

X = preprocessing.scale(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = SVC()
clf.fit(X_train, y_train)print(clf.score(X_test, y_test))# 0.9
检查神经网络(Evaluation)
  • Training and Test data

  • 误差曲线

  • 准确度曲线

  • 正规化

  • 交叉验证

Training and Test data:70% training,30% testing


webp

img1

误差曲线:


webp

img2


准确度曲线:


webp

img3


正规化:

webp

img4


交叉验证:


webp

img5

交叉验证 1 Cross-validation
  • Model 基础验证法

  • Model 交叉验证法(Cross Validation)

  • 以准确率(accuracy)判断

  • 以平均方差(Mean squared error)

Model 基础验证法:

from sklearn.datasets import load_iris # iris数据集from sklearn.model_selection import train_test_split # 分割数据模块from sklearn.neighbors import KNeighborsClassifier # K最近邻(kNN,k-NearestNeighbor)分类算法#加载iris数据集iris = load_iris()
X = iris.data
y = iris.target#分割数据并X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)#建立模型knn = KNeighborsClassifier()#训练模型knn.fit(X_train, y_train)#将准确率打印出print(knn.score(X_test, y_test))# 0.973684210526

Model 交叉验证法(Cross Validation):

from sklearn.cross_validation import cross_val_score # K折交叉验证模块#使用K折交叉验证模块scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy')#将5次的预测准确率打印出print(scores)# [ 0.96666667  1.          0.93333333  0.96666667  1.        ]#将5次的预测准确平均率打印出print(scores.mean())# 0.973333333333

以准确率(accuracy)判断

import matplotlib.pyplot as plt #可视化模块#建立测试参数集k_range = range(1, 31)

k_scores = []#藉由迭代的方式来计算不同参数对模型的影响,并返回交叉验证后的平均准确率for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
    k_scores.append(scores.mean())#可视化数据plt.plot(k_range, k_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Cross-Validated Accuracy')
plt.show()

webp

img1

以平均方差(Mean squared error):

import matplotlib.pyplot as plt
k_range = range(1, 31)
k_scores = []for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    loss = -cross_val_score(knn, X, y, cv=10, scoring='mean_squared_error')
    k_scores.append(loss.mean())

plt.plot(k_range, k_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Cross-Validated MSE')
plt.show()

webp

img2

交叉验证 2 Cross-validation
  • sklearn.learning_curve: 检视过拟合

Learning curve 检视过拟合:

from sklearn.learning_curve import learning_curve #学习曲线模块from sklearn.datasets import load_digits #digits数据集from sklearn.svm import SVC #Support Vector Classifierimport matplotlib.pyplot as plt #可视化模块import numpy as np

digits = load_digits()
X = digits.data
y = digits.target

train_sizes, train_loss, test_loss = learning_curve(
    SVC(gamma=0.001), X, y, cv=10, scoring='mean_squared_error',
    train_sizes=[0.1, 0.25, 0.5, 0.75, 1])#平均每一轮所得到的平均方差(共5轮,分别为样本10%、25%、50%、75%、100%)train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)

plt.plot(train_sizes, train_loss_mean, 'o-', color="r",
         label="Training")
plt.plot(train_sizes, test_loss_mean, 'o-', color="g",
        label="Cross-validation")

plt.xlabel("Training examples")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()

webp

img1

交叉验证 3 Cross-validation
  • sklearn.validation_curve:检视过拟合

validation_curve 检视过拟合:

from sklearn.learning_curve import validation_curve #validation_curve模块from sklearn.datasets import load_digits 
from sklearn.svm import SVC 
import matplotlib.pyplot as plt 
import numpy as np#digits数据集digits = load_digits()
X = digits.data
y = digits.target#建立参数测试集param_range = np.logspace(-6, -2.3, 5)#使用validation_curve快速找出参数对模型的影响train_loss, test_loss = validation_curve(
    SVC(), X, y, param_name='gamma', param_range=param_range, cv=10, scoring='mean_squared_error')#平均每一轮的平均方差train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)#可视化图形plt.plot(param_range, train_loss_mean, 'o-', color="r",
         label="Training")
plt.plot(param_range, test_loss_mean, 'o-', color="g",
        label="Cross-validation")

plt.xlabel("gamma")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()

webp

img1

保存模型
  • 使用 pickle 保存

  • 使用 joblib 保存

使用 pickle 保存:

from sklearn import svmfrom sklearn import datasets

clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X,y)import pickle #pickle模块#保存Model(注:save文件夹要预先建立,否则会报错)with open('save/clf.pickle', 'wb') as f:
    pickle.dump(clf, f)#读取Modelwith open('save/clf.pickle', 'rb') as f:
    clf2 = pickle.load(f)    #测试读取后的Model
    print(clf2.predict(X[0:1]))# [0]

使用 joblib 保存:

from sklearn.externals import joblib #jbolib模块#保存Model(注:save文件夹要预先建立,否则会报错)joblib.dump(clf, 'save/clf.pkl')#读取Modelclf3 = joblib.load('save/clf.pkl')#测试读取后的Modelprint(clf3.predict(X[0:1]))# [0]



作者:CrazyWolf_081c
链接:https://www.jianshu.com/p/74f059916e00


打开App,阅读手记
1人推荐
发表评论
随时随地看视频慕课网APP