继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Python学习笔记4-Pandas

慕神8447489
关注TA
已关注
手记 1310
粉丝 174
获赞 957

Pandas

学习莫烦python,非常感谢~记录自己在学习python过程中的点滴。

Pandas 安装

  • Anaconda安装

  • pip安装

Pandas 基本介绍

  • Series

  • DataFrame

    • dtype:查看数据中的类型

    • index:查看队列的序号(行)

    • columns:查看数据的名称(列)

    • values:查看数据所有值

    • describe:查看数据的总结

    • transpose:翻转数据(转置)

    • sort_index:对数据的 index 进行排序并输出

    • sort_values:对数据 value 排序输出:

Series

Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引。于是会自动创建一个0到N-1(N为长度)的整数型索引。
参考代码:

import pandas as pdimport numpy as np
s = pd.Series([1,3,6,np.nan,44,1])
print(s)"""
0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
"""
DataFrame

DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。

数据准备

dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
print(df)"""
                   a         b         c         d
2016-01-01 -0.253065 -2.071051 -0.640515  0.613663
2016-01-02 -1.147178  1.532470  0.989255 -0.499761
2016-01-03  1.221656 -2.390171  1.862914  0.778070
2016-01-04  1.473877 -0.046419  0.610046  0.204672
2016-01-05 -1.584752 -0.700592  1.487264 -1.778293
2016-01-06  0.633675 -1.414157 -0.277066 -0.442545
"""

挑选b 的元素

print(df['b'])"""
2016-01-01   -2.071051
2016-01-02    1.532470
2016-01-03   -2.390171
2016-01-04   -0.046419
2016-01-05   -0.700592
2016-01-06   -1.414157
Freq: D, Name: b, dtype: float64
"""

创建一组没有给定行标签和列标签的数据 df1,默认的从0开始index

df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)"""
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
"""

另一种方式创建df2

df2 = pd.DataFrame({'A' : 1.,                    'B' : pd.Timestamp('20130102'),                    'C' : pd.Series(1,index=list(range(4)),dtype='float32'),                    'D' : np.array([3] * 4,dtype='int32'),                    'E' : pd.Categorical(["test","train","test","train"]),                    'F' : 'foo'})
                    
print(df2)"""
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
"""

查看数据中的类型, 使用 dtype 属性:

print(df2.dtypes)"""
df2.dtypes
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
"""

查看队列的序号,使用 index属性:

print(df2.index)# Int64Index([0, 1, 2, 3], dtype='int64')

查看数据的名称,使用 columns 属性:

print(df2.columns)# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')

查看所有df2的值,使用 values 属性:

print(df2.values)"""
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
"""

查看数据的总结, 可以用 describe():

df2.describe()
"""         A    C    Dcount  4.0  4.0  4.0mean   1.0  1.0  3.0std    0.0  0.0  0.0min    1.0  1.0  3.025%    1.0  1.0  3.050%    1.0  1.0  3.075%    1.0  1.0  3.0max    1.0  1.0  3.0"""

翻转数据, transpose:

print(df2.T)"""                   
0                    1                    2  \
A                    1                    1                    1   
B  2013-01-02 00:00:00  2013-01-02 00:00:00  2013-01-02 00:00:00   
C                    1                    1                    1   
D                    3                    3                    3   
E                 test                train                 test   
F                  foo                  foo                  foo   

                     3  
A                    1  
B  2013-01-02 00:00:00  
C                    1  
D                    3  
E                train  
F                  foo  

"""

对数据的 index 进行排序并输出:

print(df2.sort_index(axis=1, ascending=False))"""
     F      E  D    C          B    A
0  foo   test  3  1.0 2013-01-02  1.0
1  foo  train  3  1.0 2013-01-02  1.0
2  foo   test  3  1.0 2013-01-02  1.0
3  foo  train  3  1.0 2013-01-02  1.0
"""# 对数据的 value 进行排序并输出:print(df2.sort_values(by='B'))"""
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
"""

Pandas 选择数据

  • 简单的筛选

  • loc:根据标签来选择数据

  • iloc:根据位置来选择数据

  • ix:混合选择

  • 通过判断的筛选

数据准备:

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])"""
             A   B   C   D
2013-01-01   0   1   2   3
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

简单的筛选:

print(df['A'])
print(df.A)"""
2013-01-01     0
2013-01-02     4
2013-01-03     8
2013-01-04    12
2013-01-05    16
2013-01-06    20
Freq: D, Name: A, dtype: int64
"""

选择跨越多行或多列:

print(df[0:3])"""
            A  B   C   D
2013-01-01  0  1   2   3
2013-01-02  4  5   6   7
2013-01-03  8  9  10  11
"""print(df['20130102':'20130104'])"""
A   B   C   D
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
"""

根据标签 loc:

print(df.loc['20130102'])"""
A    4
B    5
C    6
D    7
Name: 2013-01-02 00:00:00, dtype: int64
"""print(df.loc[:,['A','B']]) 
"""
             A   B
2013-01-01   0   1
2013-01-02   4   5
2013-01-03   8   9
2013-01-04  12  13
2013-01-05  16  17
2013-01-06  20  21
"""print(df.loc['20130102',['A','B']])"""
A    4
B    5
Name: 2013-01-02 00:00:00, dtype: int64
"""

根据序列 iloc:

print(df.iloc[3,1])# 13print(df.iloc[3:5,1:3])"""
             B   C
2013-01-04  13  14
2013-01-05  17  18
"""print(df.iloc[[1,3,5],1:3])"""
             B   C
2013-01-02   5   6
2013-01-04  13  14
2013-01-06  21  22
"""

混合选择 ix:

print(df.ix[:3,['A','C']])"""
            A   C
2013-01-01  0   2
2013-01-02  4   6
2013-01-03  8  10
"""

通过判断的筛选:

print(df[df.A>8])"""
             A   B   C   D
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

Pandas 设置值

  • 根据位置设置 lociloc

  • 根据条件设置

  • 按行或列设置

  • 添加数据

数据准备:

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])"""
             A   B   C   D
2013-01-01   0   1   2   3
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

根据位置设置 lociloc

df.iloc[2,2] = 1111df.loc['20130101','B'] = 2222"""
             A     B     C   D
2013-01-01   0  2222     2   3
2013-01-02   4     5     6   7
2013-01-03   8     9  1111  11
2013-01-04  12    13    14  15
2013-01-05  16    17    18  19
2013-01-06  20    21    22  23
"""

根据条件设置:

df.B[df.A>4] = 0"""
                A     B     C   D
2013-01-01   0  2222     2   3
2013-01-02   4     5     6   7
2013-01-03   8     0  1111  11
2013-01-04  12     0    14  15
2013-01-05  16     0    18  19
2013-01-06  20     0    22  23 
"""

按行或列设置:

df['F'] = np.nan"""
             A     B     C   D   F
2013-01-01   0  2222     2   3 NaN
2013-01-02   4     5     6   7 NaN
2013-01-03   8     0  1111  11 NaN
2013-01-04  12     0    14  15 NaN
2013-01-05  16     0    18  19 NaN
2013-01-06  20     0    22  23 NaN
"""

添加数据:

df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6)) 
"""
             A     B     C   D   F  E
2013-01-01   0  2222     2   3 NaN  1
2013-01-02   4     5     6   7 NaN  2
2013-01-03   8     0  1111  11 NaN  3
2013-01-04  12     0    14  15 NaN  4
2013-01-05  16     0    18  19 NaN  5
2013-01-06  20     0    22  23 NaN  6
"""

Pandas 处理丢失数据

  • dropna(): 去掉有 NaN 的行或列

  • fillna():将 NaN的值用其他值代替

  • isnull():判断是否有缺失数据NaN

创建含 NaN 的矩阵:

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan"""
             A     B     C   D
2013-01-01   0   NaN   2.0   3
2013-01-02   4   5.0   NaN   7
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

去掉有 NaN 的行或列:

df.dropna(
    axis=0,     # 0: 对行进行操作; 1: 对列进行操作
    how='any'   # 'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop 
    ) 
"""
             A     B     C   D
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

NaN 的值用其他值代替:

df.fillna(value=0)"""
             A     B     C   D
2013-01-01   0   0.0   2.0   3
2013-01-02   4   5.0   0.0   7
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

判断是否有缺失数据 NaN:

df.isnull() 
"""
                A      B      C      D
2013-01-01  False   True  False  False
2013-01-02  False  False   True  False
2013-01-03  False  False  False  False
2013-01-04  False  False  False  False
2013-01-05  False  False  False  False
2013-01-06  False  False  False  False
"""np.any(df.isnull()) == True  # True

Pandas 导入导出

pandas可以读取与存取的资料格式有很多种,像csvexceljsonhtmlpickle等…, 详细请看官方说明文件

参考代码:

import pandas as pd #加载模块#读取csvdata = pd.read_csv('student.csv')#打印出dataprint(data)# 将资料存取成pickledata.to_pickle('student.pickle')

Pandas 合并 concat

  • 参数axis:合并方向

  • 参数ignore_index:重置 index

  • 参数join:合并方式

  • 参数join_axes:依照 axes 合并

  • append:添加数据

axis (合并方向):

import pandas as pdimport numpy as np# 定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])# concat纵向合并res = pd.concat([df1, df2, df3], axis=0)# 打印结果print(res)#     a    b    c    d# 0  0.0  0.0  0.0  0.0# 1  0.0  0.0  0.0  0.0# 2  0.0  0.0  0.0  0.0# 0  1.0  1.0  1.0  1.0# 1  1.0  1.0  1.0  1.0# 2  1.0  1.0  1.0  1.0# 0  2.0  2.0  2.0  2.0# 1  2.0  2.0  2.0  2.0# 2  2.0  2.0  2.0  2.0

ignore_index (重置 index):

# 承上一个例子,并将index_ignore设定为Trueres = pd.concat([df1, df2, df3], axis=0, ignore_index=True)# 打印结果print(res)#     a    b    c    d# 0  0.0  0.0  0.0  0.0# 1  0.0  0.0  0.0  0.0# 2  0.0  0.0  0.0  0.0# 3  1.0  1.0  1.0  1.0# 4  1.0  1.0  1.0  1.0# 5  1.0  1.0  1.0  1.0# 6  2.0  2.0  2.0  2.0# 7  2.0  2.0  2.0  2.0# 8  2.0  2.0  2.0  2.0

join (合并方式):

import pandas as pdimport numpy as np# 定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])# 纵向"外"合并df1与df2res = pd.concat([df1, df2], axis=0, join='outer')

print(res)#     a    b    c    d    e# 1  0.0  0.0  0.0  0.0  NaN# 2  0.0  0.0  0.0  0.0  NaN# 3  0.0  0.0  0.0  0.0  NaN# 2  NaN  1.0  1.0  1.0  1.0# 3  NaN  1.0  1.0  1.0  1.0# 4  NaN  1.0  1.0  1.0  1.0# 承上一个例子# 纵向"内"合并df1与df2res = pd.concat([df1, df2], axis=0, join='inner')# 打印结果print(res)#     b    c    d# 1  0.0  0.0  0.0# 2  0.0  0.0  0.0# 3  0.0  0.0  0.0# 2  1.0  1.0  1.0# 3  1.0  1.0  1.0# 4  1.0  1.0  1.0# 重置index并打印结果res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)#     b    c    d# 0  0.0  0.0  0.0# 1  0.0  0.0  0.0# 2  0.0  0.0  0.0# 3  1.0  1.0  1.0# 4  1.0  1.0  1.0# 5  1.0  1.0  1.0

join_axes (依照 axes 合并):

import pandas as pdimport numpy as np# 定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])# 依照`df1.index`进行横向合并res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])# 打印结果print(res)#     a    b    c    d    b    c    d    e# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0# 移除join_axes,并打印结果res = pd.concat([df1, df2], axis=1)
print(res)#     a    b    c    d    b    c    d    e# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0

append (添加数据):

import pandas as pdimport numpy as np# 定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])# 将df2合并到df1的下面,以及重置index,并打印出结果res = df1.append(df2, ignore_index=True)
print(res)#     a    b    c    d# 0  0.0  0.0  0.0  0.0# 1  0.0  0.0  0.0  0.0# 2  0.0  0.0  0.0  0.0# 3  1.0  1.0  1.0  1.0# 4  1.0  1.0  1.0  1.0# 5  1.0  1.0  1.0  1.0# 合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果res = df1.append([df2, df3], ignore_index=True)
print(res)#     a    b    c    d# 0  0.0  0.0  0.0  0.0# 1  0.0  0.0  0.0  0.0# 2  0.0  0.0  0.0  0.0# 3  1.0  1.0  1.0  1.0# 4  1.0  1.0  1.0  1.0# 5  1.0  1.0  1.0  1.0# 6  1.0  1.0  1.0  1.0# 7  1.0  1.0  1.0  1.0# 8  1.0  1.0  1.0  1.0# 合并series,将s1合并至df1,以及重置index,并打印出结果res = df1.append(s1, ignore_index=True)
print(res)#     a    b    c    d# 0  0.0  0.0  0.0  0.0# 1  0.0  0.0  0.0  0.0# 2  0.0  0.0  0.0  0.0# 3  1.0  2.0  3.0  4.0

Pandas 合并 merge

  • 依据一组key合并

  • 依据两组key合并

  • Indicator:indicator=True会将合并的记录放在新的一列

  • 依据index合并

  • 解决overlapping的问题

依据一组key合并:

import pandas as pd#定义资料集并打印出left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],                             'A': ['A0', 'A1', 'A2', 'A3'],                             'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],                              'C': ['C0', 'C1', 'C2', 'C3'],                              'D': ['D0', 'D1', 'D2', 'D3']})

print(left)#    A   B key# 0  A0  B0  K0# 1  A1  B1  K1# 2  A2  B2  K2# 3  A3  B3  K3print(right)#    C   D key# 0  C0  D0  K0# 1  C1  D1  K1# 2  C2  D2  K2# 3  C3  D3  K3#依据key column合并,并打印出res = pd.merge(left, right, on='key')

print(res)
     A   B key   C   D# 0  A0  B0  K0  C0  D0# 1  A1  B1  K1  C1  D1# 2  A2  B2  K2  C2  D2# 3  A3  B3  K3  C3  D3

依据两组key合并:

import pandas as pd#定义资料集并打印出left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],                      'key2': ['K0', 'K1', 'K0', 'K1'],                      'A': ['A0', 'A1', 'A2', 'A3'],                      'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],                       'key2': ['K0', 'K0', 'K0', 'K0'],                       'C': ['C0', 'C1', 'C2', 'C3'],                       'D': ['D0', 'D1', 'D2', 'D3']})

print(left)#    A   B key1 key2# 0  A0  B0   K0   K0# 1  A1  B1   K0   K1# 2  A2  B2   K1   K0# 3  A3  B3   K2   K1print(right)#    C   D key1 key2# 0  C0  D0   K0   K0# 1  C1  D1   K1   K0# 2  C2  D2   K1   K0# 3  C3  D3   K2   K0#依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner']res = pd.merge(left, right, on=['key1', 'key2'], how='inner')
print(res)#    A   B key1 key2   C   D# 0  A0  B0   K0   K0  C0  D0# 1  A2  B2   K1   K0  C1  D1# 2  A2  B2   K1   K0  C2  D2res = pd.merge(left, right, on=['key1', 'key2'], how='outer')
print(res)#     A    B key1 key2    C    D# 0   A0   B0   K0   K0   C0   D0# 1   A1   B1   K0   K1  NaN  NaN# 2   A2   B2   K1   K0   C1   D1# 3   A2   B2   K1   K0   C2   D2# 4   A3   B3   K2   K1  NaN  NaN# 5  NaN  NaN   K2   K0   C3   D3res = pd.merge(left, right, on=['key1', 'key2'], how='left')
print(res)#    A   B key1 key2    C    D# 0  A0  B0   K0   K0   C0   D0# 1  A1  B1   K0   K1  NaN  NaN# 2  A2  B2   K1   K0   C1   D1# 3  A2  B2   K1   K0   C2   D2# 4  A3  B3   K2   K1  NaN  NaNres = pd.merge(left, right, on=['key1', 'key2'], how='right')
print(res)#     A    B key1 key2   C   D# 0   A0   B0   K0   K0  C0  D0# 1   A2   B2   K1   K0  C1  D1# 2   A2   B2   K1   K0  C2  D2# 3  NaN  NaN   K2   K0  C3  D3

Indicator :

import pandas as pd#定义资料集并打印出df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})

print(df1)#   col1 col_left# 0     0        a# 1     1        bprint(df2)#   col1  col_right# 0     1          2# 1     2          2# 2     2          2# 依据col1进行合并,并启用indicator=True,最后打印出res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
print(res)#   col1 col_left  col_right      _merge# 0   0.0        a        NaN   left_only# 1   1.0        b        2.0        both# 2   2.0      NaN        2.0  right_only# 3   2.0      NaN        2.0  right_only# 自定indicator column的名称,并打印出res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
print(res)#   col1 col_left  col_right indicator_column# 0   0.0        a        NaN        left_only# 1   1.0        b        2.0             both# 2   2.0      NaN        2.0       right_only# 3   2.0      NaN        2.0       right_only

依据index合并

import pandas as pd#定义资料集并打印出left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],                     'B': ['B0', 'B1', 'B2']},
                     index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],                      'D': ['D0', 'D2', 'D3']},
                     index=['K0', 'K2', 'K3'])

print(left)#     A   B# K0  A0  B0# K1  A1  B1# K2  A2  B2print(right)#     C   D# K0  C0  D0# K2  C2  D2# K3  C3  D3# 依据左右资料集的index进行合并,how='outer',并打印出res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
print(res)#      A    B    C    D# K0   A0   B0   C0   D0# K1   A1   B1  NaN  NaN# K2   A2   B2   C2   D2# K3  NaN  NaN   C3   D3# 依据左右资料集的index进行合并,how='inner',并打印出res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)#     A   B   C   D# K0  A0  B0  C0  D0# K2  A2  B2  C2  D2

解决overlapping的问题:

import pandas as pd#定义资料集boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})#使用suffixes解决overlapping的问题res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
print(res)#    age_boy   k  age_girl# 0        1  K0         4# 1        1  K0         5

Pandas plot 出图

  • 创建一个Series

  • Dataframe 可视化

创建一个Series :

import pandas as pdimport numpy as npimport matplotlib.pyplot as plt# 随机生成1000个数据data = pd.Series(np.random.randn(1000),index=np.arange(1000)) 
# 为了方便观看效果, 我们累加这个数据data.cumsum()# pandas 数据可以直接观看其可视化形式data.plot()

plt.show()

webp

img1

Dataframe 可视化:

data = pd.DataFrame(
    np.random.randn(1000,4),
    index=np.arange(1000),
    columns=list("ABCD")
    )
data.cumsum()
data.plot()
plt.show()

webp

img2

ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')# 将之下这个 data 画在上一个 ax 上面data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax)
plt.show()

webp

img3



作者:CrazyWolf_081c
链接:https://www.jianshu.com/p/1ea7c0d32bab


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP