继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Spark 核心 RDD 剖析(下)

三国纷争
关注TA
已关注
手记 466
粉丝 51
获赞 178

这篇文章将介绍剩余的部分,即 compute func、dependency、preferedLocation

compute func

在前一篇文章中提到,当调用 RDD#iterator 方法无法从缓存或 checkpoint 中获取指定 partition 的迭代器时,就需要调用 compute 方法来获取,该方法声明如下:

def compute(split: Partition, context: TaskContext): Iterator[T]

每个具体的 RDD 都必须实现自己的 compute 函数。从上面的分析我们可以联想到,任何一个 RDD 的任意一个 partition 都首先是通过 compute 函数计算出的,之后才能进行 cache 或 checkpoint。接下来我们来对几个常用 transformation 操作对应的 RDD 的 compute 进行分析

map

首先来看下 map 的实现:

  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

我们调用 map 时,会传入匿名函数 f: T => U,该函数将一个类型 T 实例转换成一个类型 U 的实例。在 map 函数中,将该函数进一步封装成 (context, pid, iter) => iter.map(cleanF) 的函数,该函数以迭代器作为参数,对迭代出的每一个元素执行 f 函数,然后以该封装后的函数作为参数来构造 MapPartitionsRDD,接下来看看 MapPartitionsRDD#compute 是怎么实现的:

  override def compute(split: Partition, context: TaskContext): Iterator[U] =
    f(context, split.index, firstParent[T].iterator(split, context))

上面代码中的 firstParent 是指本 RDD 的依赖 dependencies: Seq[Dependency[_]] 中的第一个,MapPartitionsRDD 的依赖中只有一个父 RDD。而 MapPartitionsRDD 的 partition 与其唯一的父 RDD partition 是一一对应的,所以其 compute 方法可以描述为:对父 RDD partition 中的每一个元素执行传入 map 的方法得到自身的 partition 及迭代器

groupByKey

与 map、union 不同,groupByKey 是一个会产生宽依赖的 transform,其最终生成的 RDD 是 ShuffledRDD,来看看其 compute 实现:

  override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
    val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
    SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
      .read()
      .asInstanceOf[Iterator[(K, C)]]
  }

可以看到,ShuffledRDD 的 compute 使用 ShuffleManager 来获取一个 reader,该 reader 将从本地或远程 BlockManager 拉取 map output 的 file 数据,每个 reduce task 拉取一个 partition 数据。

对于其他生成 ShuffledRDD 的 transform 的 compute 操作也是如此,比如 reduceByKey,join 等

dependency

RDD 依赖是一个 Seq 类型:dependencies_ : Seq[Dependency[_]],因为一个 RDD 可以有多个父 RDD。共有两种依赖:

  • 窄依赖:父 RDD 的 partition 至多被一个子 RDD partition 依赖

  • 宽依赖:父 RDD 的 partition 被多个子 RDD partitions 依赖

窄依赖共有两种实现,一种是一对一的依赖,即 OneToOneDependency:

@DeveloperApiclass OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
  override def getParents(partitionId: Int): List[Int] = List(partitionId)
}

从其 getParents 方法可以看出 OneToOneDependency 的依赖关系下,子 RDD 的 partition 仅依赖于唯一 parent RDD 的相同 index 的 partition。另一种窄依赖的实现是 RangeDependency,它仅仅被 UnionRDD 使用,UnionRDD 把多个 RDD 合成一个 RDD,这些 RDD 是被拼接而成,其 getParents 实现如下:

  override def getParents(partitionId: Int): List[Int] = {    if (partitionId >= outStart && partitionId < outStart + length) {
      List(partitionId - outStart + inStart)
    } else {
      Nil
    }
  }

宽依赖只有一种实现,即 ShuffleDependency,宽依赖支持两种 Shuffle Manager,即 HashShuffleManagerSortShuffleManager,Shuffle 相关内容以后会专门写文章介绍

preferedLocation

preferedLocation 即 RDD 每个 partition 对应的优先位置,每个 partition 对应一个Seq[String],表示一组优先节点的 host。

要注意的是,并不是每个 RDD 都有 preferedLocation,比如从 Scala 集合中创建的 RDD 就没有,而从 HDFS 读取的 RDD 就有,其 partition 对应的优先位置及对应的 block 所在的各个节点。



作者:牛肉圆粉不加葱
链接:https://www.jianshu.com/p/207607888767


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP