例子如下:
scala> val textFileRDD = sc.textFile("/Users/zhuweibin/Downloads/hive_04053f79f32b414a9cf5ab0d4a3c9daf.txt")15/08/03 07:00:08 INFO MemoryStore: ensureFreeSpace(57160) called with curMem=0, maxMem=27801944015/08/03 07:00:08 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 55.8 KB, free 265.1 MB)15/08/03 07:00:08 INFO MemoryStore: ensureFreeSpace(17237) called with curMem=57160, maxMem=27801944015/08/03 07:00:08 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 16.8 KB, free 265.1 MB)15/08/03 07:00:08 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:51675 (size: 16.8 KB, free: 265.1 MB)15/08/03 07:00:08 INFO SparkContext: Created broadcast 0 from textFile at <console>:21textFileRDD: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at <console>:21scala> println( textFileRDD.partitions.size )15/08/03 07:00:09 INFO FileInputFormat: Total input paths to process : 12scala> textFileRDD.partitions.foreach { partition => | println("index:" + partition.index + " hasCode:" + partition.hashCode()) | }index:0 hasCode:1681index:1 hasCode:1682scala> println("dependency size:" + textFileRDD.dependencies) dependency size:List(org.apache.spark.OneToOneDependency@543669de) scala> println( textFileRDD ) MapPartitionsRDD[1] at textFile at <console>:21scala> textFileRDD.dependencies.foreach { dep => | println("dependency type:" + dep.getClass) | println("dependency RDD:" + dep.rdd) | println("dependency partitions:" + dep.rdd.partitions) | println("dependency partitions size:" + dep.rdd.partitions.length) | } dependency type:class org.apache.spark.OneToOneDependency dependency RDD:/Users/zhuweibin/Downloads/hive_04053f79f32b414a9cf5ab0d4a3c9daf.txt HadoopRDD[0] at textFile at <console>:21 dependency partitions:[Lorg.apache.spark.Partition;@c197f46 dependency partitions size:2 scala> scala> val flatMapRDD = textFileRDD.flatMap(_.split(" ")) flatMapRDD: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:23 scala> println( flatMapRDD ) MapPartitionsRDD[2] at flatMap at <console>:23 scala> flatMapRDD.dependencies.foreach { dep => | println("dependency type:" + dep.getClass) | println("dependency RDD:" + dep.rdd) | println("dependency partitions:" + dep.rdd.partitions) | println("dependency partitions size:" + dep.rdd.partitions.length) | } dependency type:class org.apache.spark.OneToOneDependencydependency RDD:MapPartitionsRDD[1] at textFile at <console>:21dependency partitions:[Lorg.apache.spark.Partition;@c197f46 dependency partitions size:2scala> scala> val mapRDD = flatMapRDD.map(word => (word, 1))mapRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:25scala> println( mapRDD ) MapPartitionsRDD[3] at map at <console>:25scala> mapRDD.dependencies.foreach { dep => | println("dependency type:" + dep.getClass) | println("dependency RDD:" + dep.rdd) | println("dependency partitions:" + dep.rdd.partitions) | println("dependency partitions size:" + dep.rdd.partitions.length) | } dependency type:class org.apache.spark.OneToOneDependency dependency RDD:MapPartitionsRDD[2] at flatMap at <console>:23 dependency partitions:[Lorg.apache.spark.Partition;@c197f46 dependency partitions size:2 scala> scala> scala> val counts = mapRDD.reduceByKey(_ + _) counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:27 scala> println( counts ) ShuffledRDD[4] at reduceByKey at <console>:27 scala> counts.dependencies.foreach { dep => | println("dependency type:" + dep.getClass) | println("dependency RDD:" + dep.rdd) | println("dependency partitions:" + dep.rdd.partitions) | println("dependency partitions size:" + dep.rdd.partitions.length) | } dependency type:class org.apache.spark.ShuffleDependencydependency RDD:MapPartitionsRDD[3] at map at <console>:25dependency partitions:[Lorg.apache.spark.Partition;@c197f46 dependency partitions size:2scala>
从输出我们可以看出,对于任意一个RDD x来说,其dependencies代表了其直接依赖的RDDs(一个或多个)。那dependencies又是怎么能够表明RDD之间的依赖关系呢?假设dependency为dependencies成员
dependency的类型(NarrowDependency或ShuffleDependency)说明了该依赖是窄依赖还是宽依赖
通过dependency的
def getParents(partitionId: Int): Seq[Int]
方法,可以得到子RDD的每个分区依赖父RDD的哪些分区dependency包含RDD成员,即子RDD依赖的父RDD,该RDD的compute函数说明了对该父RDD的分区进行怎么样的计算能得到子RDD的分区
该父RDD中同样包含dependency成员,该dependency同样包含上述特点,同样可以通过该父RDD的dependency成员来确定该父RDD依赖的爷爷RDD。同样可以通过
dependency.getParents
方法和爷爷RDD.compute来得出如何从父RDD回朔到爷爷RDD,依次类推,可以回朔到第一个RDD
那么,如果某个RDD的partition计算失败,要回朔到哪个RDD为止呢?上例中打印出的dependency.RDD如下:
MapPartitionsRDD[1] at textFile at <console>:21MapPartitionsRDD[2] at flatMap at <console>:23MapPartitionsRDD[3] at map at <console>:25ShuffledRDD[4] at reduceByKey at <console>:27
可以看出每个RDD都有一个编号,在回朔的过程中,每向上回朔一次变回得到一个或多个相对父RDD,这时系统会判断该RDD是否存在(即被缓存),如果存在则停止回朔,如果不存在则一直向上回朔到某个RDD存在或到最初RDD的数据源为止。
作者:牛肉圆粉不加葱
链接:https://www.jianshu.com/p/6b9e4001723d