概述
Spark Application只有遇到action操作时才会真正的提交任务并进行计算,DAGScheduler 会根据各个RDD之间的依赖关系形成一个DAG,并根据ShuffleDependency来进行stage的划分,stage包含多个tasks,个数由该stage的finalRDD决定,stage里面的task完全相同,DAGScheduler 完成stage的划分后基于每个Stage生成TaskSet,并提交给TaskScheduler,TaskScheduler负责具体的task的调度,在Worker节点上启动task。
Job的提交
以count为例,直接看源码都有哪些步骤:
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum DAGScheduler#runJob DAGScheduler#runJob DAGScheduler#runJob DAGScheduler#dagScheduler.runJob DAGScheduler#submitJob eventProcessLoop.post(JobSubmitted(**))
eventProcessLoop是一个DAGSchedulerEventProcessLoop(this)对象,可以把DAGSchedulerEventProcessLoop理解成DAGScheduler的对外的功能接口。它对外隐藏了自己内部实现的细节。无论是内部还是外部消息,DAGScheduler可以共用同一消息处理代码,逻辑清晰,处理方式统一。
eventProcessLoop接收各种消息并进行处理,处理的逻辑在其doOnReceive方法中:
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match { case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) => dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) case MapStageSubmitted(jobId, dependency, callSite, listener, properties) => dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties) ...... }
当提交的是JobSubmitted,便会通过 dagScheduler.handleJobSubmitted处理此事件。
Stage的划分
在handleJobSubmitted方法中第一件事情就是通过finalRDD向前追溯对Stage的划分。
private[scheduler] def handleJobSubmitted(jobId: Int, finalRDD: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], callSite: CallSite, listener: JobListener, properties: Properties) { var finalStage: ResultStage = null try { //Stage划分过程是从最后一个Stage开始往前执行的,最后一个Stage的类型是ResultStage finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite) } catch { case e: Exception => logWarning("Creating new stage failed due to exception - job: " + jobId, e) listener.jobFailed(e) return } //为此job生成一个ActiveJob对象 val job = new ActiveJob(jobId, finalStage, callSite, listener, properties) clearCacheLocs() logInfo("Got job %s (%s) with %d output partitions".format( job.jobId, callSite.shortForm, partitions.length)) logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")") logInfo("Parents of final stage: " + finalStage.parents) logInfo("Missing parents: " + getMissingParentStages(finalStage)) val jobSubmissionTime = clock.getTimeMillis() jobIdToActiveJob(jobId) = job //记录该job处于active状态 activeJobs += job finalStage.setActiveJob(job) val stageIds = jobIdToStageIds(jobId).toArray val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo)) listenerBus.post( //向LiveListenerBus发送Job提交事件 SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties)) submitStage(finalStage) //提交Stage submitWaitingStages() }
跟进newResultStage方法:
private def newResultStage( rdd: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], jobId: Int, callSite: CallSite): ResultStage = { val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId) //获取stage的parentstage val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite) stageIdToStage(id) = stage //将Stage和stage_id关联 updateJobIdStageIdMaps(jobId, stage) //跟新job所包含的stage stage }
直接实例化一个ResultStage,但需要parentStages作为参数,我们看看getParentStagesAndId做了什么:
private def getParentStagesAndId(rdd: RDD[_], firstJobId: Int): (List[Stage], Int) = { val parentStages = getParentStages(rdd, firstJobId) val id = nextStageId.getAndIncrement() (parentStages, id) }
获取parentStages,并返回一个与stage关联的唯一id,由于是递归的向前生成stage,所以最先生成的stage是最前面的stage,越往前的stageId就越小,即父Stage的id最小。继续跟进getParentStages:
private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = { val parents = new HashSet[Stage] // 当前Stage的所有parent Stage val visited = new HashSet[RDD[_]] // 已经访问过的RDD // We are manually maintaining a stack here to prevent StackOverflowError // caused by recursively visiting val waitingForVisit = new Stack[RDD[_]] //等待访问的RDD def visit(r: RDD[_]) { if (!visited(r)) { //若未访问过 visited += r //标记已被访问 // Kind of ugly: need to register RDDs with the cache here since // we can't do it in its constructor because # of partitions is unknown for (dep <- r.dependencies) { //遍历其所有依赖 dep match { case shufDep: ShuffleDependency[_, _, _] => //若为宽依赖,则生成新的Stage,shuffleMapstage parents += getShuffleMapStage(shufDep, firstJobId) case _ => //若为窄依赖(归为当前Stage),压入栈,继续向前循环,直到遇到宽依赖或者无依赖 waitingForVisit.push(dep.rdd) } } } } waitingForVisit.push(rdd) //将当前rdd压入栈 while (waitingForVisit.nonEmpty) { //等待访问的rdd不为空时继续访问 visit(waitingForVisit.pop()) } parents.toList }
通过给定的RDD返回其依赖的Stage集合。通过RDD每一个依赖进行遍历,遇到窄依赖就继续往前遍历,遇到ShuffleDependency便通过getShuffleMapStage返回一个ShuffleMapStage对象添加到父Stage列表中。可见,这里的parentStage是Stage直接依赖的父stages(parentStage也有自己的parentStage),而不是整个DAG的所有stages。继续跟进getShuffleMapStage的实现:
private def getShuffleMapStage( shuffleDep: ShuffleDependency[_, _, _], firstJobId: Int): ShuffleMapStage = { shuffleToMapStage.get(shuffleDep.shuffleId) match { case Some(stage) => stage //若已经在shuffleToMapStage存在直接返回Stage case None => //不存在需要生成新的Stage //为当前shuffle的父shuffle都生成一个ShuffleMapStage getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep => if (!shuffleToMapStage.contains(dep.shuffleId)) { shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId) //跟新shuffleToMapStage映射 } } // 为当前shuffle生成新的Stage val stage = newOrUsedShuffleStage(shuffleDep, firstJobId) shuffleToMapStage(shuffleDep.shuffleId) = stage stage } }
先从shuffleToMapStage根据shuffleid获取Stage,若未获取到再去计算,第一次都肯定为None,我们先看getAncestorShuffleDependencies干了什么:
private def getAncestorShuffleDependencies(rdd: RDD[_]): Stack[ShuffleDependency[_, _, _]] = { val parents = new Stack[ShuffleDependency[_, _, _]] // 当前shuffleDependency所有的祖先ShuffleDependency(不是直接ShuffleDependency) val visited = new HashSet[RDD[_]] // 已经被访问过的RDD // 等待被访问的RDD val waitingForVisit = new Stack[RDD[_]] def visit(r: RDD[_]) { if (!visited(r)) { //未被访问过 visited += r //标记已被访问 for (dep <- r.dependencies) { //遍历直接依赖 dep match { case shufDep: ShuffleDependency[_, _, _] => if (!shuffleToMapStage.contains(shufDep.shuffleId)) { // 若为shuffleDependency并且还没有映射,则添加到parents parents.push(shufDep) } case _ => } waitingForVisit.push(dep.rdd) //即使是shuffleDependency的rdd也要继续遍历 } } } waitingForVisit.push(rdd) while (waitingForVisit.nonEmpty) { visit(waitingForVisit.pop()) } parents }
貌似和getParentStages方法很像,区别是这里获取的所有祖先ShuffleDependency,而不是直接父ShuffleDependency。
为当前shuffle的父shuffle都生成一个ShuffleMapStage后再通过newOrUsedShuffleStage获取当前依赖的shuffleStage,再和shuffleid关联起来,看newOrUsedShuffleStage的实现:
private def newOrUsedShuffleStage( shuffleDep: ShuffleDependency[_, _, _], firstJobId: Int): ShuffleMapStage = { val rdd = shuffleDep.rdd //依赖对应的rdd val numTasks = rdd.partitions.length //分区个数 val stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite) //返回当前rdd的shufflestage if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) { //如果当前shuffle已经在MapOutputTracker中注册过,也就是Stage已经被计算过,从MapOutputTracker中获取计算结果 val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId) val locs = MapOutputTracker.deserializeMapStatuses(serLocs) (0 until locs.length).foreach { i => // 更新Shuffle的Shuffle Write路径 if (locs(i) ne null) { // locs(i) will be null if missing stage.addOutputLoc(i, locs(i)) } } } else { //还没有被注册计算过 // Kind of ugly: need to register RDDs with the cache and map output tracker here // since we can't do it in the RDD constructor because # of partitions is unknown logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")") mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length) //注册 } stage }
继续看newShuffleMapStage:
private def newShuffleMapStage( rdd: RDD[_], numTasks: Int, shuffleDep: ShuffleDependency[_, _, _], firstJobId: Int, callSite: CallSite): ShuffleMapStage = { val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, firstJobId) //获取parentstages即stageid val stage: ShuffleMapStage = new ShuffleMapStage(id, rdd, numTasks, parentStages, firstJobId, callSite, shuffleDep) //实例化一个shuffleStage对象 stageIdToStage(id) = stage //Stage和id关联 updateJobIdStageIdMaps(firstJobId, stage) //跟新job所有的Stage stage }
怎么和newResultStage极其的相似?是的没错,这里会生成ShuffleStage,getParentStagesAndId里面的实现就是一个递归调用。
由finalRDD往前追溯递归生成Stage,最前面的ShuffleStage先生成,最终生成ResultStage,至此,DAGScheduler对Stage的划分已经完成。
作者:BIGUFO
链接:https://www.jianshu.com/p/a1ec03185b82