based on spark-1.5.1 standalone mode
在Spark Application Web UI的 Stages tag 上,我们可以看到这个的表格,描述的是某个 stage 的 tasks 的一些信息,其中 Locality Level 一栏的值可以有 PROCESS_LOCAL、NODE_LOCAL、NO_PREF、RACK_LOCAL、ANY
几个值。这篇文章将从这几个值入手,从源码角度分析 TaskSetManager 的 Locality Levels
这几个值在图中代表 task 的计算节点和 task 的输入数据的节点位置关系
PROCESS_LOCAL
: 数据在同一个 JVM 中,即同一个 executor 上。这是最佳数据 locality。NODE_LOCAL
: 数据在同一个节点上。比如数据在同一个节点的另一个 executor上;或在 HDFS 上,恰好有 block 在同一个节点上。速度比 PROCESS_LOCAL 稍慢,因为数据需要在不同进程之间传递或从文件中读取NO_PREF
: 数据从哪里访问都一样快,不需要位置优先RACK_LOCAL
: 数据在同一机架的不同节点上。需要通过网络传输数据及文件 IO,比 NODE_LOCAL 慢ANY
: 数据在非同一机架的网络上,速度最慢
我们在上图中看到的其实是结果,即某个 task 计算节点与其输入数据的位置关系,下面将要挖掘Spark 的调度系统如何产生这个结果,这一过程涉及 RDD、DAGScheduler、TaskScheduler,搞懂了这一过程也就基本搞懂了 Spark 的 PreferredLocations(位置优先策略)
RDD 的 PreferredLocations
我们知道,根据输入数据源的不同,RDD 可能具有不同的优先位置,通过 RDD 的以下方法可以返回指定 partition 的最优先位置:
protected def getPreferredLocations(split: Partition): Seq[String]
返回类型为 Seq[String]
,其实对应的是 Seq[TaskLocation]
,在返回前都会执行 TaskLocation#toString
方法。TaskLocation 是一个 trait,共有以三种实现,分别代表数据存储在不同的位置:
/** * 代表数据存储在 executor 的内存中,也就是这个 partition 被 cache到内存了 */private [spark]case class ExecutorCacheTaskLocation(override val host: String, executorId: String) extends TaskLocation { override def toString: String = s"${TaskLocation.executorLocationTag}${host}_$executorId"}/** * 代表数据存储在 host 这个节点的磁盘上 */private [spark] case class HostTaskLocation(override val host: String) extends TaskLocation { override def toString: String = host }/** * 代表数据存储在 hdfs 上 */private [spark] case class HDFSCacheTaskLocation(override val host: String) extends TaskLocation { override def toString: String = TaskLocation.inMemoryLocationTag + host }
ExecutorCacheTaskLocation: 代表 partition 数据已经被 cache 到内存,比如 KafkaRDD 会将 partitions 都 cache 到内存,其 toString 方法返回的格式如
executor_$host_$executorId
HostTaskLocation:代表 partition 数据存储在某个节点的磁盘上(且不在 hdfs 上),其 toString 方法直接返回 host
HDFSCacheTaskLocation:代表 partition 数据存储在 hdfs 上,比如从 hdfs 上加载而来的 HadoopRDD 的 partition,其 toString 方法返回的格式如
hdfs_cache_$host
这样,我们就知道不同的 RDD 会有不同的优先位置,并且存储在不同位置的优先位置的字符串的格式是不同的,这在之后 TaskSetManager 计算 tasks 的最优本地性起了关键作用。
DAGScheduler 生成 taskSet
DAGScheduler 通过调用 submitStage 来提交一个 stage 对应的 tasks,submitStage 会调用submitMissingTasks,submitMissingTasks 会以下代码来确定每个需要计算的 task 的preferredLocations,这里调用到了 RDD#getPreferredLocs,getPreferredLocs返回的 partition 的优先位置,就是这个 partition 对应的 task 的优先位置
val taskIdToLocations = try { stage match { case s: ShuffleMapStage => partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap case s: ResultStage => val job = s.resultOfJob.get partitionsToCompute.map { id => val p = job.partitions(id) (id, getPreferredLocs(stage.rdd, p)) }.toMap } } catch { ... }
这段调用返回的 taskIdToLocations: Seq[ taskId -> Seq[hosts] ]
会在submitMissingTasks生成要提交给 TaskScheduler 调度的 taskSet: Seq[Task[_]]时用到,如下,注意看注释:
val tasks: Seq[Task[_]] = try { stage match { case stage: ShuffleMapStage => partitionsToCompute.map { id => val locs = taskIdToLocations(id) val part = stage.rdd.partitions(id) //< 使用上述获得的 task 对应的优先位置,即 locs 来构造ShuffleMapTask new ShuffleMapTask(stage.id, stage.latestInfo.attemptId, taskBinary, part, locs, stage.internalAccumulators) } case stage: ResultStage => val job = stage.resultOfJob.get partitionsToCompute.map { id => val p: Int = job.partitions(id) val part = stage.rdd.partitions(p) val locs = taskIdToLocations(id) //< 使用上述获得的 task 对应的优先位置,即 locs 来构造ResultTask new ResultTask(stage.id, stage.latestInfo.attemptId, taskBinary, part, locs, id, stage.internalAccumulators) } } } catch { ... }
简而言之,在 DAGScheduler 为 stage 创建要提交给 TaskScheduler 调度执行的 taskSet 时,对于 taskSet 中的每一个 task,其优先位置与其对应的 partition 对应的优先位置一致
构造 TaskSetManager,确定 locality levels
在 DAGScheduler 向 TaskScheduler 提交了 taskSet 之后,TaskSchedulerImpl 会为每个 taskSet 创建一个 TaskSetManager 对象,该对象包含taskSet 所有 tasks,并管理这些 tasks 的执行,其中就包括计算 taskSetManager 中的 tasks 都有哪些locality levels,以便在调度和延迟调度 tasks 时发挥作用。
在构造 TaskSetManager 对象时,会调用var myLocalityLevels = computeValidLocalityLevels()
来确定locality levels
private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = { import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY} val levels = new ArrayBuffer[TaskLocality.TaskLocality] if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 && pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) { levels += PROCESS_LOCAL } if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 && pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) { levels += NODE_LOCAL } if (!pendingTasksWithNoPrefs.isEmpty) { levels += NO_PREF } if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 && pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) { levels += RACK_LOCAL } levels += ANY logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", ")) levels.toArray }
这个函数是在解决4个问题:
taskSetManager 的 locality levels是否包含
PROCESS_LOCAL
taskSetManager 的 locality levels是否包含
NODE_LOCAL
taskSetManager 的 locality levels是否包含
NO_PREF
taskSetManager 的 locality levels是否包含
RACK_LOCAL
让我们来各个击破
taskSetManager 的 locality levels是否包含 PROCESS_LOCAL
关键代码:
if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 && pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) { levels += PROCESS_LOCAL }
真正关键的其实是这段代码,其他两个判断都很简单
pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))
要搞懂这段代码,首先要搞明白下面两个问题
pendingTasksForExecutor是怎么来的,什么含义?
sched.isExecutorAlive(_)干了什么?
pendingTasksForExecutor是怎么来的,什么含义?
pendingTasksForExecutor 在 TaskSetManager 构造函数中被创建,如下private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]]
其中,key 为executoroId,value 为task index 数组。在 TaskSetManager 的构造函数中如下调用
for (i <- (0 until numTasks).reverse) { addPendingTask(i) }
这段调用为 taskSetManager 中的优先位置类型为 ExecutorCacheTaskLocation
(这里通过 toString 返回的格式进行匹配) 的 tasks 调用 addPendingTask,addPendingTask 获取 task 的优先位置,即一个 Seq[String]
;再获得这组优先位置对应的 executors,从来反过来获得了 executor 对应 partition 缓存在其上内存的 tasks,即pendingTasksForExecutor
简单的说,pendingTasksForExecutor保存着当前可用的 executor 对应的 partition 缓存在在其上内存中的 tasks 的映射关系
sched.isExecutorAlive(_)干了什么?
sched.isExecutorAlive的实现为:
def TaskSchedulerImpl#isExecutorAlive(execId: String): Boolean = synchronized { activeExecutorIds.contains(execId) }
activeExecutorIds: HashSet[String]
保存集群当前所有可用的 executor id(这里对 executor 的 free cores 个数并没有要求,可为0),每当 DAGScheduler 提交 taskSet 会触发 TaskScheduler 调用 resourceOffers 方法,该方法会更新当前可用的 executors 至 activeExecutorIds;当有 executor lost 的时候,TaskSchedulerImpl 也会调用 removeExecutor 来将 lost 的executor 从 activeExecutorIds 中去除
所有isExecutorAlive就是判断参数中的 executor id 当前是否 active
结合以上两段代码的分析,可以知道这行代码pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))
的含义: taskSetManager 的所有对应 partition 数据缓存在 executor 内存中的 tasks 对应的所有 executor,是否有任一 active,若有则返回 true;否则返回 false
这样,也就知道了如何去判断一个 taskSetManager 对象的 locality levels 是否包含 PROCESS_LOCAL
taskSetManager 的 locality levels是否包含 NODE_LOCAL
有了上面对 PROCESS_LOCAL 的详细分析,这里对是否包含 NODE_LOCAL 只做简要分析。最关键代码
pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))
,其中
pendingTasksForHost:
HashMap[String, ArrayBuffer[Int]]
类型,key 为 host,value 为 preferredLocations 包含该 host 的 tasks indexs 数组sched.hasExecutorsAliveOnHost(_):
源码如下,其中executorsByHost为HashMap[String, HashSet[String]]
类型,key 为 host,value 为该 host 上的 active executors
def hasExecutorsAliveOnHost(host: String): Boolean = synchronized { executorsByHost.contains(host) }
这样,也就知道如何判断 taskSetManager 的 locality levels:taskSetManager 的所有 tasks 对应的所有 hosts,是否有任一是 tasks 的优先位置 hosts,若有返回 true;否则返回 false
taskSetManager 的 locality levels是否包含 RACK_LOCAL
关键代码:pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))
,其中
pendingTasksForRack:
HashMap[String, ArrayBuffer[Int]]
类型,key为 rack,value 为优先位置所在的 host 属于该机架的 taskssched.hasHostAliveOnRack(_):源码如下,其中
hostsByRack: HashMap[String, HashSet[String]]
的 key 为 rack,value 为该 rack 上所有作为 taskSetManager 优先位置的 hosts
def hasHostAliveOnRack(rack: String): Boolean = synchronized { hostsByRack.contains(rack) }
所以,判断 taskSetManager 的 locality levels 是否包含RACK_LOCAL
的规则为:taskSetManager 的所有 tasks 的优先位置 host 所在的所有 racks 与当前 active executors 所在的机架是否有交集,若有则返回 true,否则返回 false
taskSetManager 的 locality levels是否包含 NO_PREF
关键代码如下:
if (!pendingTasksWithNoPrefs.isEmpty) { levels += NO_PREF }
如果一个 RDD 的某些 partitions 没有优先位置(如是以内存集合作为数据源且 executors 和 driver不在同一个节点),那么这个 RDD action 产生的 taskSetManagers 的 locality levels 就包含 NO_PREF
对于所有的 taskSetManager 均包含 ANY
作者:牛肉圆粉不加葱
链接:https://www.jianshu.com/p/05034a9c8cae